Skip to content

Commit

Permalink
[docs] Scheduler features (#7990)
Browse files Browse the repository at this point in the history
* noise schedule

* sigmas and zero snr

* feedback

* feedback
  • Loading branch information
stevhliu authored May 28, 2024
1 parent b2030a2 commit 0ab6dc0
Show file tree
Hide file tree
Showing 4 changed files with 238 additions and 101 deletions.
2 changes: 2 additions & 0 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,8 @@
title: Distributed inference with multiple GPUs
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: using-diffusers/scheduler_features
title: Scheduler features
- local: using-diffusers/callback
title: Pipeline callbacks
- local: using-diffusers/reusing_seeds
Expand Down
46 changes: 1 addition & 45 deletions docs/source/en/using-diffusers/image_quality.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,54 +12,10 @@ specific language governing permissions and limitations under the License.

# Controlling image quality

The components of a diffusion model, like the UNet and scheduler, can be optimized to improve the quality of generated images leading to better image lighting and details. These techniques are especially useful if you don't have the resources to simply use a larger model for inference. You can enable these techniques during inference without any additional training.
The components of a diffusion model, like the UNet and scheduler, can be optimized to improve the quality of generated images leading to better details. These techniques are especially useful if you don't have the resources to simply use a larger model for inference. You can enable these techniques during inference without any additional training.

This guide will show you how to turn these techniques on in your pipeline and how to configure them to improve the quality of your generated images.

## Lighting

The Stable Diffusion models aren't very good at generating images that are very bright or dark because the scheduler doesn't start sampling from the last timestep and it doesn't enforce a zero signal-to-noise ratio (SNR). The [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://hf.co/papers/2305.08891) paper fixes these issues which are now available in some Diffusers schedulers.

> [!TIP]
> For inference, you need a model that has been trained with *v_prediction*. To train your own model with *v_prediction*, add the following flag to the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts.
>
> ```bash
> --prediction_type="v_prediction"
> ```
For example, load the [ptx0/pseudo-journey-v2](https://hf.co/ptx0/pseudo-journey-v2) checkpoint which was trained with `v_prediction` and the [`DDIMScheduler`]. Now you should configure the following parameters in the [`DDIMScheduler`].
* `rescale_betas_zero_snr=True` to rescale the noise schedule to zero SNR
* `timestep_spacing="trailing"` to start sampling from the last timestep
Set `guidance_rescale` in the pipeline to prevent over-exposure. A lower value increases brightness but some of the details may appear washed out.
```py
from diffusers import DiffusionPipeline, DDIMScheduler
pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True)
pipeline.scheduler = DDIMScheduler.from_config(
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
pipeline.to("cuda")
prompt = "cinematic photo of a snowy mountain at night with the northern lights aurora borealis overhead, 35mm photograph, film, professional, 4k, highly detailed"
generator = torch.Generator(device="cpu").manual_seed(23)
image = pipeline(prompt, guidance_rescale=0.7, generator=generator).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/no-zero-snr.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">default Stable Diffusion v2-1 image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/zero-snr.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">image with zero SNR and trailing timestep spacing enabled</figcaption>
</div>
</div>

## Details

[FreeU](https://hf.co/papers/2309.11497) improves image details by rebalancing the UNet's backbone and skip connection weights. The skip connections can cause the model to overlook some of the backbone semantics which may lead to unnatural image details in the generated image. This technique does not require any additional training and can be applied on the fly during inference for tasks like image-to-image and text-to-video.
Expand Down
235 changes: 235 additions & 0 deletions docs/source/en/using-diffusers/scheduler_features.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Scheduler features

The scheduler is an important component of any diffusion model because it controls the entire denoising (or sampling) process. There are many types of schedulers, some are optimized for speed and some for quality. With Diffusers, you can modify the scheduler configuration to use custom noise schedules, sigmas, and rescale the noise schedule. Changing these parameters can have profound effects on inference quality and speed.

This guide will demonstrate how to use these features to improve inference quality.

> [!TIP]
> Diffusers currently only supports the `timesteps` and `sigmas` parameters for a select list of schedulers and pipelines. Feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you want to extend these parameters to a scheduler and pipeline that does not currently support it!
## Timestep schedules

The timestep or noise schedule determines the amount of noise at each sampling step. The scheduler uses this to generate an image with the corresponding amount of noise at each step. The timestep schedule is generated from the scheduler's default configuration, but you can customize the scheduler to use new and optimized sampling schedules that aren't in Diffusers yet.

For example, [Align Your Steps (AYS)](https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/) is a method for optimizing a sampling schedule to generate a high-quality image in as little as 10 steps. The optimal [10-step schedule](https://github.com/huggingface/diffusers/blob/a7bf77fc284810483f1e60afe34d1d27ad91ce2e/src/diffusers/schedulers/scheduling_utils.py#L51) for Stable Diffusion XL is:

```py
from diffusers.schedulers import AysSchedules

sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
print(sampling_schedule)
"[999, 845, 730, 587, 443, 310, 193, 116, 53, 13]"
```

You can use the AYS sampling schedule in a pipeline by passing it to the `timesteps` parameter.

```py
pipeline = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++")

prompt = "A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up"
generator = torch.Generator(device="cpu").manual_seed(2487854446)
image = pipeline(
prompt=prompt,
negative_prompt="",
generator=generator,
timesteps=sampling_schedule,
).images[0]
```

<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ays.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">AYS timestep schedule 10 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/10.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 10 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/25.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 25 steps</figcaption>
</div>
</div>

## Timestep spacing

The way sample steps are selected in the schedule can affect the quality of the generated image, especially with respect to [rescaling the noise schedule](#rescale-noise-schedule), which can enable a model to generate much brighter or darker images. Diffusers provides three timestep spacing methods:

- `leading` creates evenly spaced steps
- `linspace` includes the first and last steps and evenly selects the remaining intermediate steps
- `trailing` only includes the last step and evenly selects the remaining intermediate steps starting from the end

It is recommended to use the `trailing` spacing method because it generates higher quality images with more details when there are fewer sample steps. But the difference in quality is not as obvious for more standard sample step values.

```py
import torch
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler

pipeline = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")

prompt = "A cinematic shot of a cute little black cat sitting on a pumpkin at night"
generator = torch.Generator(device="cpu").manual_seed(2487854446)
image = pipeline(
prompt=prompt,
negative_prompt="",
generator=generator,
num_inference_steps=5,
).images[0]
image
```

<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/trailing_spacing.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">trailing spacing after 5 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/leading_spacing.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">leading spacing after 5 steps</figcaption>
</div>
</div>

## Sigmas

The `sigmas` parameter is the amount of noise added at each timestep according to the timestep schedule. Like the `timesteps` parameter, you can customize the `sigmas` parameter to control how much noise is added at each step. When you use a custom `sigmas` value, the `timesteps` are calculated from the custom `sigmas` value and the default scheduler configuration is ignored.

For example, you can manually pass the [sigmas](https://github.com/huggingface/diffusers/blob/6529ee67ec02fcf58d2fd9242164ea002b351d75/src/diffusers/schedulers/scheduling_utils.py#L55) for something like the 10-step AYS schedule from before to the pipeline.

```py
import torch

from diffusers import DiffusionPipeline, EulerDiscreteScheduler

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)

sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.0]
prompt = "anthropomorphic capybara wearing a suit and working with a computer"
generator = torch.Generator(device='cuda').manual_seed(123)
image = pipeline(
prompt=prompt,
num_inference_steps=10,
sigmas=sigmas,
generator=generator
).images[0]
```

When you take a look at the scheduler's `timesteps` parameter, you'll see that it is the same as the AYS timestep schedule because the `timestep` schedule is calculated from the `sigmas`.

```py
print(f" timesteps: {pipe.scheduler.timesteps}")
"timesteps: tensor([999., 845., 730., 587., 443., 310., 193., 116., 53., 13.], device='cuda:0')"
```

### Karras sigmas

> [!TIP]
> Refer to the scheduler API [overview](../api/schedulers/overview) for a list of schedulers that support Karras sigmas.
>
> Karras sigmas should not be used for models that weren't trained with them. For example, the base Stable Diffusion XL model shouldn't use Karras sigmas but the [DreamShaperXL](https://hf.co/Lykon/dreamshaper-xl-1-0) model can since they are trained with Karras sigmas.
Karras scheduler's use the timestep schedule and sigmas from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://hf.co/papers/2206.00364) paper. This scheduler variant applies a smaller amount of noise per step as it approaches the end of the sampling process compared to other schedulers, and can increase the level of details in the generated image.

Enable Karras sigmas by setting `use_karras_sigmas=True` in the scheduler.

```py
import torch
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler

pipeline = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)

prompt = "A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up"
generator = torch.Generator(device="cpu").manual_seed(2487854446)
image = pipeline(
prompt=prompt,
negative_prompt="",
generator=generator,
).images[0]
```

<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/karras_sigmas_true.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Karras sigmas enabled</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/karras_sigmas_false.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Karras sigmas disabled</figcaption>
</div>
</div>

## Rescale noise schedule

In the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://hf.co/papers/2305.08891) paper, the authors discovered that common noise schedules allowed some signal to leak into the last timestep. This signal leakage at inference can cause models to only generate images with medium brightness. By enforcing a zero signal-to-noise ratio (SNR) for the timstep schedule and sampling from the last timestep, the model can be improved to generate very bright or dark images.

> [!TIP]
> For inference, you need a model that has been trained with *v_prediction*. To train your own model with *v_prediction*, add the following flag to the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts.
>
> ```bash
> --prediction_type="v_prediction"
> ```
For example, load the [ptx0/pseudo-journey-v2](https://hf.co/ptx0/pseudo-journey-v2) checkpoint which was trained with `v_prediction` and the [`DDIMScheduler`]. Configure the following parameters in the [`DDIMScheduler`]:
* `rescale_betas_zero_snr=True` to rescale the noise schedule to zero SNR
* `timestep_spacing="trailing"` to start sampling from the last timestep
Set `guidance_rescale` in the pipeline to prevent over-exposure. A lower value increases brightness but some of the details may appear washed out.
```py
from diffusers import DiffusionPipeline, DDIMScheduler
pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True)
pipeline.scheduler = DDIMScheduler.from_config(
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
pipeline.to("cuda")
prompt = "cinematic photo of a snowy mountain at night with the northern lights aurora borealis overhead, 35mm photograph, film, professional, 4k, highly detailed"
generator = torch.Generator(device="cpu").manual_seed(23)
image = pipeline(prompt, guidance_rescale=0.7, generator=generator).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/no-zero-snr.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">default Stable Diffusion v2-1 image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/zero-snr.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">image with zero SNR and trailing timestep spacing enabled</figcaption>
</div>
</div>
56 changes: 0 additions & 56 deletions docs/source/en/using-diffusers/schedulers.md
Original file line number Diff line number Diff line change
Expand Up @@ -212,62 +212,6 @@ images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```

## Custom Timestep Schedules

With all our schedulers, you can choose one of the popular timestep schedules using configurations such as `timestep_spacing`, `interpolation_type`, and `use_karras_sigmas`. Some schedulers also provide the flexibility to use a custom timestep schedule. You can use any list of arbitrary timesteps, we will use the AYS timestep schedule here as example. It is a set of 10-step optimized timestep schedules released by researchers from Nvidia that can achieve significantly better quality compared to the preset timestep schedules. You can read more about their research [here](https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/).

```python
from diffusers.schedulers import AysSchedules
sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
print(sampling_schedule)
```
```
[999, 845, 730, 587, 443, 310, 193, 116, 53, 13]
```

You can then create a pipeline and pass this custom timestep schedule to it as `timesteps`.

```python
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")

pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, algorithm_type="sde-dpmsolver++")

prompt = "A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up"

generator = torch.Generator(device="cpu").manual_seed(2487854446)

image = pipe(
prompt=prompt,
negative_prompt="",
generator=generator,
timesteps=sampling_schedule,
).images[0]
```
The generated image has better quality than the default linear timestep schedule for the same number of steps, and it is similar to the default timestep scheduler when running for 25 steps.

<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ays.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">AYS timestep schedule 10 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/10.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 10 steps</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/25.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 25 steps</figcaption>
</div>
</div>

> [!TIP]
> 🤗 Diffusers currently only supports `timesteps` and `sigmas` for a selected list of schedulers and pipelines, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you want to extend feature to a scheduler and pipeline that does not currently support it!

## Models

Models are loaded from the [`ModelMixin.from_pretrained`] method, which downloads and caches the latest version of the model weights and configurations. If the latest files are available in the local cache, [`~ModelMixin.from_pretrained`] reuses files in the cache instead of re-downloading them.
Expand Down

0 comments on commit 0ab6dc0

Please sign in to comment.