Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updated torchrun instructions #2096

Merged
merged 21 commits into from
Nov 20, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 27 additions & 26 deletions examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,28 +64,25 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on your server
accelerate launch ./nlp_example.py # This will run the script on your server
```
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
* With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`)
```bash
python -m torchrun --nproc_per_node 2 --use_env ./nlp_example.py
torchrun --nproc_per_node 2 ./nlp_example.py
```
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
* With Accelerate config and launcher, on each machine:
```bash
accelerate config # This will create a config file on each server
accelerate launch ./nlp_example.py # This will run the script on each server
```
* With PyTorch launcher only (`torch.distributed.launch` can be used in older versions of PyTorch)
* With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this commnad on each node:
TJ-Solergibert marked this conversation as resolved.
Show resolved Hide resolved
```bash
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 0 \
--master_addr master_node_ip_address \
./nlp_example.py # On the first server
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 1 \
--master_addr master_node_ip_address \
./nlp_example.py # On the second server
torchrun \ # python -m torch.distributed.run
--nproc_per_node 2 \
--nnodes 2 \
--rdzv_id 2299 \ # A unique job id
--rdzv_backend c10d \
--rdzv_endpoint master_node_ip_address:29500 \
./nlp_example.py
```
- (multi) TPUs
* With Accelerate config and launcher
Expand Down Expand Up @@ -152,28 +149,25 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on your server
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on your server
```
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
* With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`)
```bash
python -m torchrun --nproc_per_node 2 --use_env ./cv_example.py --data_dir path_to_data
torchrun --nproc_per_node 2 ./cv_example.py --data_dir path_to_data
```
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
* With Accelerate config and launcher, on each machine:
```bash
accelerate config # This will create a config file on each server
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
```
* With PyTorch launcher only (`torch.distributed.launch` can be used with older versions of PyTorch)
* With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this commnad on each node:
```bash
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 0 \
--master_addr master_node_ip_address \
./cv_example.py --data_dir path_to_data # On the first server
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 1 \
--master_addr master_node_ip_address \
./cv_example.py --data_dir path_to_data # On the second server
torchrun \ # python -m torch.distributed.run
--nproc_per_node 2 \
--nnodes 2 \
--rdzv_id 2299 \ # A unique job id
--rdzv_backend c10d \
--rdzv_endpoint master_node_ip_address:29500 \
./cv_example.py --data_dir path_to_data
```
- (multi) TPUs
* With Accelerate config and launcher
Expand Down Expand Up @@ -206,6 +200,13 @@ with `pip install runhouse`, and you can refer to
for hardware setup instructions, or this
[Colab tutorial](https://colab.research.google.com/drive/1qVwYyLTCPYPSdz9ZX7BZl9Qm0A3j7RJe) for a more in-depth walkthrough.

## SLURM Scripts
In [/Slurm/submit-multiGPU.sh](./Slurm/submit-multiGPU.sh) and [/Slurm/submit-multinode.sh](./Slurm/submit-multinode.sh) we present two scripts for running the examples on a machine with [SLURM](https://slurm.schedmd.com/documentation.html) workload manager.

In [/Slurm/submit-multiGPU.sh](./Slurm/submit-multiGPU.sh) the only parameter in the launcher that needs to be modified is `--nproc_per_node`, which determines the number of GPUs we will use. In this case, using the environment variable `$SLURM_GPUS`, we indicate that we want to utilize all the GPUs available on the node we have requested.
TJ-Solergibert marked this conversation as resolved.
Show resolved Hide resolved

In [/Slurm/submit-multinode.sh](./Slurm/submit-multinode.sh) we must specify the number of nodes that will be part of the training (`--nnodes`), how many GPUs we will use per node (`--nproc_per_node`), the `--rdzv_id` which is a unique identifier, the [`--rdzv_backend`](https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend) and the `--rdzv_endpoint` which will be the address and port of the master node.
TJ-Solergibert marked this conversation as resolved.
Show resolved Hide resolved

## Finer Examples

While the first two scripts are extremely barebones when it comes to what you can do with accelerate, more advanced features are documented in two other locations.
Expand Down
25 changes: 25 additions & 0 deletions examples/Slurm/submit-multiGPU.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
#!/bin/bash

#SBATCH --job-name=multigpu
#SBATCH -D .
#SBATCH --output=O-%x.%j
#SBATCH --error=E-%x.%j
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1 # number of MP tasks
#SBATCH --gres=gpu:4 # number of GPUs per node
#SBATCH --cpus-per-task=160 # number of cores per tasks
#SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS)

######################
### Set enviroment ###
######################
source activateEnviroment.sh
######################

export SCRIPT=/accelerate/examples/complete_nlp_example.py
export SCRIPT_ARGS=" \
--mixed_precision fp16 \
--output_dir /accelerate/examples/output \
"

torchrun --nproc_per_node $SLURM_GPUS $SCRIPT $SCRIPT_ARGS
TJ-Solergibert marked this conversation as resolved.
Show resolved Hide resolved
43 changes: 43 additions & 0 deletions examples/Slurm/submit-multinode.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
#!/bin/bash

#SBATCH --job-name=multinode
#SBATCH -D .
#SBATCH --output=O-%x.%j
#SBATCH --error=E-%x.%j
#SBATCH --nodes=4 # number of nodes
#SBATCH --ntasks-per-node=1 # number of MP tasks
#SBATCH --gres=gpu:4 # number of GPUs per node
#SBATCH --cpus-per-task=160 # number of cores per tasks
#SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS)

######################
### Set enviroment ###
######################
source activateEnviroment.sh
######################

######################
#### Set network #####
######################
nodes=( $( scontrol show hostnames $SLURM_JOB_NODELIST ) )
nodes_array=($nodes)
head_node=${nodes_array[0]}
head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address)
######################

export LAUNCHER=" \
torchrun \
--nnodes $SLURM_NNODES \
--nproc_per_node $SLURM_GPUS \
--rdzv_id $RANDOM \
--rdzv_backend c10d \
--rdzv_endpoint $head_node_ip:29500 \
"
TJ-Solergibert marked this conversation as resolved.
Show resolved Hide resolved

export SCRIPT=/accelerate/examples/complete_nlp_example.py
export SCRIPT_ARGS=" \
--mixed_precision fp16 \
--output_dir /accelerate/examples/output \
"

srun $LAUNCHER $SCRIPT $SCRIPT_ARGS
Loading