Skip to content

Commit

Permalink
Fix XPU inference
Browse files Browse the repository at this point in the history
Though it will complain about "Device xpu is not recognized, available devices are integers(for GPU/XPU),
'mps', 'cpu' and 'disk'", but you cannot just put 0 as device, or it will treat 0 as CUDA device, then complains
again that torch is not compiled with CUDA enabled.

You will need safetensors >= 0.4.2 if using safetensors files.
  • Loading branch information
notsyncing committed Feb 1, 2024
1 parent 7aafa25 commit 2d1152b
Show file tree
Hide file tree
Showing 3 changed files with 21 additions and 2 deletions.
5 changes: 5 additions & 0 deletions src/accelerate/big_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
get_balanced_memory,
infer_auto_device_map,
is_npu_available,
is_xpu_available,
is_torch_version,
load_checkpoint_in_model,
offload_state_dict,
Expand Down Expand Up @@ -451,6 +452,8 @@ def wrapper(*args, **kwargs):
model.to = add_warning(model.to, model)
if is_npu_available():
model.npu = add_warning(model.npu, model)
elif is_xpu_available():
model.xpu = add_warning(model.xpu, model)
else:
model.cuda = add_warning(model.cuda, model)

Expand All @@ -459,6 +462,8 @@ def wrapper(*args, **kwargs):
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
elif is_xpu_available() and isinstance(device, int):
device = f"xpu:{device}"
if device != "disk":
model.to(device)
else:
Expand Down
11 changes: 10 additions & 1 deletion src/accelerate/utils/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -367,6 +367,8 @@ def set_module_tensor_to_device(
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
if is_xpu_available() and isinstance(device, int):
device = f"xpu:{device}"
if value is None:
new_value = old_value.to(device)
if dtype is not None and device in ["meta", torch.device("meta")]:
Expand Down Expand Up @@ -427,6 +429,8 @@ def set_module_tensor_to_device(
# clean pre and post foward hook
if is_npu_available():
torch.npu.empty_cache()
elif is_xpu_available():
torch.xpu.empty_cache()
else:
torch.cuda.empty_cache()

Expand Down Expand Up @@ -1351,7 +1355,12 @@ def load_state_dict(checkpoint_file, device_map=None):
else:
progress_bar = None
for device in devices:
with safe_open(checkpoint_file, framework="pt", device=device) as f:
target_device = device

if is_xpu_available() and isinstance(device, int):
target_device = f"xpu:{device}"

with safe_open(checkpoint_file, framework="pt", device=target_device) as f:
for key in device_weights[device]:
if progress_bar is not None:
progress_bar.set_postfix(dev=device, refresh=False)
Expand Down
7 changes: 6 additions & 1 deletion src/accelerate/utils/operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
from ..state import PartialState
from .constants import TORCH_DISTRIBUTED_OPERATION_TYPES
from .dataclasses import DistributedType, TensorInformation
from .imports import is_npu_available, is_torch_distributed_available, is_torch_version, is_tpu_available
from .imports import is_npu_available, is_torch_distributed_available, is_torch_version, is_tpu_available, is_xpu_available


if is_tpu_available(check_device=False):
Expand Down Expand Up @@ -171,6 +171,11 @@ def send_to_device(tensor, device, non_blocking=False, skip_keys=None):
# `torch.Tensor.to("npu")` could not find context when called for the first time (see this [issue](https://gitee.com/ascend/pytorch/issues/I8KECW?from=project-issue)).
elif device == torch.device("npu"):
device = "npu:0"
elif is_xpu_available():
if isinstance(device, int):
device = f"xpu:{device}"
elif device == torch.device("xpu"):
device = "xpu:0"
try:
return tensor.to(device, non_blocking=non_blocking)
except TypeError: # .to() doesn't accept non_blocking as kwarg
Expand Down

0 comments on commit 2d1152b

Please sign in to comment.