-
Notifications
You must be signed in to change notification settings - Fork 989
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Mehant Kammakomati <[email protected]>
- Loading branch information
Showing
2 changed files
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,252 @@ | ||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import argparse | ||
import json | ||
import os | ||
from pathlib import Path | ||
|
||
import evaluate | ||
import torch | ||
from datasets import load_dataset | ||
from torch.optim import AdamW | ||
from torch.utils.data import DataLoader | ||
from transformers import AutoModelForCausalLM, AutoTokenizer, get_linear_schedule_with_warmup, set_seed | ||
|
||
from accelerate import Accelerator, DistributedType | ||
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler | ||
|
||
|
||
MAX_GPU_BATCH_SIZE = 16 | ||
EVAL_BATCH_SIZE = 32 | ||
|
||
|
||
def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"): | ||
""" | ||
Creates a set of `DataLoader`s for the `glue` dataset. | ||
Args: | ||
accelerator (`Accelerator`): | ||
An `Accelerator` object | ||
batch_size (`int`, *optional*): | ||
The batch size for the train and validation DataLoaders. | ||
model_name (`str`, *optional*): | ||
""" | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
datasets = load_dataset("glue", "mrpc") | ||
|
||
def tokenize_function(examples): | ||
# max_length=None => use the model max length (it's actually the default) | ||
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) | ||
return outputs | ||
|
||
# Apply the method we just defined to all the examples in all the splits of the dataset | ||
tokenized_datasets = datasets.map( | ||
tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False | ||
) | ||
|
||
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the | ||
# transformers library | ||
tokenized_datasets = tokenized_datasets.rename_column("label", "labels") | ||
|
||
def collate_fn(examples): | ||
# On TPU it's best to pad everything to the same length or training will be very slow. | ||
if accelerator.distributed_type == DistributedType.XLA: | ||
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") | ||
return tokenizer.pad(examples, padding="longest", return_tensors="pt") | ||
|
||
# Instantiate dataloaders. | ||
train_dataloader = DataLoader( | ||
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size | ||
) | ||
eval_dataloader = DataLoader( | ||
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE | ||
) | ||
|
||
return train_dataloader, eval_dataloader | ||
|
||
|
||
def training_function(config, args): | ||
# Initialize accelerator | ||
accelerator = Accelerator() | ||
|
||
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs | ||
lr = config["lr"] | ||
num_epochs = int(config["num_epochs"]) | ||
seed = int(config["seed"]) | ||
batch_size = int(config["batch_size"]) | ||
model_name = args.model_name_or_path | ||
|
||
set_seed(seed) | ||
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name) | ||
|
||
# Instantiate the model (we build the model here so that the seed also control new weights initialization) | ||
model = AutoModelForCausalLM.from_pretrained(model_name, return_dict=True) | ||
|
||
# Instantiate optimizer | ||
optimizer_cls = ( | ||
AdamW | ||
if accelerator.state.deepspeed_plugin is None | ||
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config | ||
else DummyOptim | ||
) | ||
optimizer = optimizer_cls(params=model.parameters(), lr=lr) | ||
|
||
max_training_steps = len(train_dataloader) * num_epochs | ||
|
||
# Instantiate scheduler | ||
linear_decay_scheduler = False | ||
if ( | ||
accelerator.state.deepspeed_plugin is None | ||
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config | ||
): | ||
lr_scheduler = get_linear_schedule_with_warmup( | ||
optimizer=optimizer, | ||
num_warmup_steps=0, | ||
num_training_steps=max_training_steps, | ||
) | ||
linear_decay_scheduler = True | ||
else: | ||
lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0) | ||
|
||
# Prepare everything | ||
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the | ||
# prepare method. | ||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( | ||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler | ||
) | ||
|
||
# We also need to keep track of the stating epoch so files are named properly | ||
starting_epoch = 0 | ||
|
||
# Now we train the model | ||
metric = evaluate.load("glue", "mrpc") | ||
best_performance = 0 | ||
performance_metric = {} | ||
expected_lr_after_first_optim_step = lr * ( | ||
1 - 1 / (max_training_steps / accelerator.num_processes / accelerator.gradient_accumulation_steps) | ||
) | ||
lr_scheduler_check_completed = False | ||
for epoch in range(starting_epoch, num_epochs): | ||
model.train() | ||
for step, batch in enumerate(train_dataloader): | ||
with accelerator.accumulate(model): | ||
outputs = model(**batch) | ||
loss = outputs.loss | ||
accelerator.backward(loss) | ||
optimizer.step() | ||
lr_scheduler.step() | ||
optimizer.zero_grad() | ||
|
||
# assert the learning rate after first optimizer step | ||
if ( | ||
accelerator.sync_gradients | ||
and not lr_scheduler_check_completed | ||
and linear_decay_scheduler | ||
and accelerator.state.mixed_precision == "no" | ||
): | ||
assert ( | ||
lr_scheduler.get_last_lr()[0] == expected_lr_after_first_optim_step | ||
), f"Wrong lr found at second step, expected {expected_lr_after_first_optim_step}, got {lr_scheduler.get_last_lr()[0]}" | ||
lr_scheduler_check_completed = True | ||
|
||
model.eval() | ||
samples_seen = 0 | ||
for step, batch in enumerate(eval_dataloader): | ||
# We could avoid this line since we set the accelerator with `device_placement=True`. | ||
batch.to(accelerator.device) | ||
with torch.no_grad(): | ||
outputs = model(**batch) | ||
predictions = outputs.logits.argmax(dim=-1) | ||
# It is slightly faster to call this once, than multiple times | ||
predictions, references = accelerator.gather( | ||
(predictions, batch["labels"]) | ||
) # If we are in a multiprocess environment, the last batch has duplicates | ||
if accelerator.use_distributed: | ||
if step == len(eval_dataloader) - 1: | ||
predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] | ||
references = references[: len(eval_dataloader.dataset) - samples_seen] | ||
else: | ||
samples_seen += references.shape[0] | ||
metric.add_batch( | ||
predictions=predictions, | ||
references=references, | ||
) | ||
|
||
eval_metric = metric.compute() | ||
# Use accelerator.print to print only on the main process. | ||
accelerator.print(f"epoch {epoch}:", eval_metric) | ||
performance_metric[f"epoch-{epoch}"] = eval_metric["accuracy"] | ||
|
||
if best_performance < eval_metric["accuracy"]: | ||
best_performance = eval_metric["accuracy"] | ||
|
||
# check that the LR is 0 | ||
if linear_decay_scheduler and accelerator.state.mixed_precision == "no": | ||
assert ( | ||
lr_scheduler.get_last_lr()[0] == 0 | ||
), f"Wrong lr found at last step, expected 0, got {lr_scheduler.get_last_lr()[0]}" | ||
|
||
if args.performance_lower_bound is not None: | ||
assert ( | ||
args.performance_lower_bound <= best_performance | ||
), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" | ||
|
||
accelerator.wait_for_everyone() | ||
if accelerator.is_main_process: | ||
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: | ||
json.dump(performance_metric, f) | ||
|
||
# Finally try saving the model | ||
accelerator.save_model(model, args.output_dir) | ||
accelerator.wait_for_everyone() | ||
assert Path( | ||
args.output_dir, "model.safetensors" | ||
).exists(), "Model was not saved when calling `Accelerator.save_model`" | ||
accelerator.end_training() | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") | ||
parser.add_argument( | ||
"--model_name_or_path", | ||
type=str, | ||
default="bert-base-cased", | ||
help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
required=False, | ||
) | ||
parser.add_argument( | ||
"--output_dir", | ||
type=str, | ||
default=".", | ||
help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", | ||
) | ||
parser.add_argument( | ||
"--performance_lower_bound", | ||
type=float, | ||
default=None, | ||
help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", | ||
) | ||
parser.add_argument( | ||
"--num_epochs", | ||
type=int, | ||
default=3, | ||
help="Number of train epochs.", | ||
) | ||
args = parser.parse_args() | ||
config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} | ||
training_function(config, args) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |