Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[shardformer] update bert tests for checking all optimization. #4413

Merged
merged 1 commit into from
Aug 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion colossalai/shardformer/modeling/bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1048,9 +1048,12 @@ def forward(
final_attention_mask = final_attention_mask * scale + attention_mask
else:
final_attention_mask = attention_mask

if final_attention_mask is not None:
batch_size, src_len = query_layer.size()[0], query_layer.size()[2]
tgt_len = key_layer.size()[2]
final_attention_mask = final_attention_mask.expand(batch_size, self.num_attention_heads, src_len, tgt_len)
final_attention_mask = final_attention_mask.expand(batch_size, self.num_attention_heads, src_len,
tgt_len).contiguous()

query_layer = query_layer.permute(0, 2, 1, 3).contiguous()
key_layer = key_layer.permute(0, 2, 1, 3).contiguous()
Expand Down
29 changes: 19 additions & 10 deletions tests/kit/model_zoo/transformers/bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,21 +69,30 @@ def data_gen_for_mcq():
# data['labels'] = torch.tensor([0], dtype=torch.int64)
input_ids = torch.tensor([[[
101, 1999, 3304, 1010, 10733, 2366, 1999, 5337, 10906, 1010, 2107, 2004, 2012, 1037, 4825, 1010, 2003, 3591,
4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2007, 1037, 9292, 1998, 1037, 5442, 1012, 102, 102
4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2007, 1037, 9292, 1998, 1037, 5442, 1012, 102, 102, 5442,
1012, 102, 102
],
[
101, 1999, 3304, 1010, 10733, 2366, 1999, 5337, 10906, 1010, 2107, 2004, 2012, 1037,
4825, 1010, 2003, 3591, 4895, 14540, 6610, 2094, 1012, 102, 2009, 2003, 8828, 2096,
2218, 1999, 1996, 2192, 1012, 102, 0, 0
2218, 1999, 1996, 2192, 1012, 102, 0, 0, 1012, 102, 0, 0
]]])
token_type_ids = torch.tensor(
[[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0]]])
attention_mask = torch.tensor(
[[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0]]])
token_type_ids = torch.tensor([[[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1
],
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0
]]])
attention_mask = torch.tensor([[[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1
],
[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0
]]])
labels = torch.tensor([0], dtype=torch.int64)

return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, labels=labels)
Expand Down
39 changes: 27 additions & 12 deletions tests/test_shardformer/test_model/test_shard_bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,10 +36,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
tp_group = booster.plugin.tp_group
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage():
if test_config['precision'] == 'fp32':
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if org_model.__class__.__name__ == 'BertModel':
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)

check_loss(org_loss, sharded_loss, atol=1e-5, rtol=1e-3)
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
# unwrap model
if org_model.__class__.__name__ == 'BertModel':
bert = org_model
Expand All @@ -51,17 +55,25 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
col_layer_for_check = ['encoder.layer[0].output.dense']
row_layer_for_check = ['embeddings.word_embeddings', 'encoder.layer[0].intermediate.dense']

if test_config['precision'] == 'fp32':
atol, rtol = 1e-4, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
#check_weight(bert.embeddings.word_embeddings, sharded_bert.embeddings.word_embeddings, tp_group, atol=1e-5, rtol=1e-3)
#check_weight(bert.encoder.layer[0].attention.self.query, sharded_bert.encoder.layer[0].attention.self.query, tp_group, atol=5e-3, rtol=1e-3)
check_grad(bert, sharded_bert, col_layer_for_check, tp_group, atol=1e-4, rtol=1e-3, dim=1, verbose=False)
check_grad(bert, sharded_bert, row_layer_for_check, tp_group, atol=1e-4, rtol=1e-3, dim=0, verbose=False)
check_grad(bert, sharded_bert, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
check_grad(bert, sharded_bert, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False)

# check weights after optimizer.step()
org_optimizer.step()
sharded_optimizer.step()
if test_config['precision'] == 'fp32':
atol, rtol = 5e-3, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
check_weight(bert, sharded_bert, col_layer_for_check, tp_group, atol=5e-3, rtol=1e-3, dim=1, verbose=False)
check_weight(bert, sharded_bert, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)

torch.cuda.empty_cache()

Expand All @@ -70,23 +82,26 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'tp_size': 1,
'pp_size': 2,
'num_microbatches': 4,
'use_lazy_init': True
'use_lazy_init': True,
'precision': 'fp32',
}, {
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'enable_fused_normalization': False,
'use_lazy_init': False
'num_microbatches': 2,
'enable_all_optimization': True,
'use_lazy_init': True,
'precision': 'fp16',
'initial_scale': 1,
}, {
'tp_size': 4,
'pp_size': 1,
'enable_fused_normalization': True,
'use_lazy_init': False
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32',
}])
def run_bert_test(test_config):

sub_model_zoo = model_zoo.get_sub_registry('transformers_bert')
test_config['precision'] = 'float'

for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
Expand Down
Loading