Skip to content

hmonroe/lean4-logic2

 
 

Repository files navigation

lean4-logic

Formalizing Logic in Lean4

https://iehality.github.io/lean4-logic/

Table of Contents

Usage

Add following to lakefile.lean.

require logic from git "https://github.com/iehality/lean4-logic"

Structure

The key results are summarised in Logic/Summary.lean.

  • Logic
    • Vorspiel: Supplementary definitions and theorems for Mathlib
    • Logic
    • AutoProver: Automated theorem proving based on proof search
    • Propositional: Propositional logic
      • Basic
    • ManySorted: Many-sorted logic
      • Basic
    • FirstOrder: First-order logic
      • Basic
      • Computability: encodeing, computability
      • Completeness: Completeness theorem
      • Arith: Arithmetic
      • Incompleteness: Incompleteness theorem
    • SecondOrder: Monadic second-order logic
    • Modal: Variants of modal logics
      • Normal: Normal propositional modal logic

Propositional Logic

Definition

Definition Notation
$(\rm Cut)\vdash_\mathrm{T} \Gamma$ Derivation in Tait-Calculus + Cut LO.Propositional.Derivation ⊢¹ Γ
$v \models p$ Tarski's truth definition condition LO.Propositional.semantics v ⊧ p

Theorem

  • Soundness theorem

    theorem LO.Propositional.soundness
      {α : Type u_1}
      {T : LO.Propositional.Theory α}
      {p : LO.Propositional.Formula α} :
      T ⊢ p → T ⊨ p
  • Completeness theorem

    noncomputable def LO.Propositional.completeness
        {α : Type u_1}
        {T : LO.Propositional.Theory α}
        {p : LO.Propositional.Formula α} :
        T ⊨ p → T ⊢ p

First-Order Logic

$\mathbf{PA^-}$ is not to be included in $\mathbf{I\Sigma}_n$ or $\mathbf{PA}$ for simplicity in this formalization.

Definition

Definition Notation
$(\rm Cut)\vdash_\mathrm{T} \Gamma$ Derivation in Tait-Calculus + Cut LO.FirstOrder.Derivation ⊢¹ Γ
$M \models \sigma$ Tarski's truth definition condition LO.FirstOrder.Models M ⊧ₘ σ
$\mathbf{Eq}$ Axiom of equality LO.FirstOrder.Theory.Eq 𝐄𝐪
$\mathbf{PA^-}$ Finitely axiomatized fragment of $\mathbf{PA}$ LO.FirstOrder.Arith.Theory.PAminus 𝐏𝐀⁻
$\mathbf{I}_\mathrm{open}$ Induction of open formula LO.FirstOrder.Arith.Theory.IOpen 𝐈open
$\mathbf{I\Sigma}_n$ Induction of $\Sigma_n$ formula LO.FirstOrder.Arith.Theory.ISigma 𝐈𝚺
$\mathbf{PA}$ Peano arithmetic LO.FirstOrder.Arith.Theory.Peano 𝐏𝐀

Theorem

  • Cut-elimination

    def LO.FirstOrder.Derivation.hauptsatz
        {L : LO.FirstOrder.Language}
        [(k : ℕ) → DecidableEq (LO.FirstOrder.Language.Func L k)]
        [(k : ℕ) → DecidableEq (LO.FirstOrder.Language.Rel L k)]
        {Δ : LO.FirstOrder.Sequent L} :
        ⊢¹ Δ → { d : ⊢¹ Δ // LO.FirstOrder.Derivation.CutFree d }
  • Soundness theorem

    theorem LO.FirstOrder.soundness
        {L : LO.FirstOrder.Language}
        {T : Set (LO.FirstOrder.Sentence L)}
        {σ : LO.FirstOrder.Sentence L} :
        T ⊢ σ → T ⊨ σ
  • Completeness theorem

    noncomputable def LO.FirstOrder.completeness
        {L : LO.FirstOrder.Language}
        {T : LO.FirstOrder.Theory L}
        {σ : LO.FirstOrder.Sentence L} :
        T ⊨ σ → T ⊢ σ
  • Gödel's first incompleteness theorem

    theorem LO.FirstOrder.Arith.first_incompleteness
        (T : LO.FirstOrder.Theory ℒₒᵣ)
        [DecidablePred T]
        [𝐄𝐪 ≾ T]
        [𝐏𝐀⁻ ≾ T]
        [LO.FirstOrder.Arith.SigmaOneSound T]
        [LO.FirstOrder.Theory.Computable T] :
        ¬LO.System.Complete T
    • undecidable sentence
      theorem LO.FirstOrder.Arith.undecidable
          (T : LO.FirstOrder.Theory ℒₒᵣ)
          [DecidablePred T]
          [𝐄𝐪 ≾ T]
          [𝐏𝐀⁻ ≾ T]
          [LO.FirstOrder.Arith.SigmaOneSound T]
          [LO.FirstOrder.Theory.Computable T] :
          T ⊬ LO.FirstOrder.Arith.FirstIncompleteness.undecidable T ∧
          T ⊬ ~LO.FirstOrder.Arith.FirstIncompleteness.undecidable T

Normal Modal Logic

Definition

In this formalization, (Modal) Logic means set of axioms.

Logic Definition Notation Remarks
$\mathbf{K}$ LO.Modal.Normal.LogicK 𝐊
$\mathbf{KD}$ LO.Modal.Normal.LogicKD 𝐊𝐃
$\mathbf{S4}$ LO.Modal.Normal.LogicS4 𝐒𝟒 Alias of 𝐊𝐓𝟒.
$\mathbf{S4.2}$ LO.Modal.Normal.LogicS4Dot2 𝐒𝟒.𝟐
$\mathbf{S4.3}$ LO.Modal.Normal.LogicS4Dot3 𝐒𝟒.𝟑
$\mathbf{S4Grz}$ LO.Modal.Normal.LogicS4Grz 𝐒𝟒𝐆𝐫𝐳
$\mathbf{S5}$ LO.Modal.Normal.LogicS5 𝐒𝟓 Alias of 𝐊𝐓𝟓.
$\mathbf{GL}$ LO.Modal.Normal.LogicGL 𝐆𝐋
Definition Notation
$M, w \models \varphi$ Satisfy LO.Modal.Normal.Formula.Satisfies w ⊧ᴹˢ[M] φ
$M \models \varphi$ Valid on model (Models) LO.Modal.Normal.Formula.Models ⊧ᴹᵐ[M] φ
$F \models \varphi$ Valid on frame (Frames) LO.Modal.Normal.Formula.Frames ⊧ᴹᶠ[F] φ
$\Gamma \models^F \varphi$ Consequence on frame LO.Modal.Normal.Formula.FrameConsequence Γ ⊨ᴹᶠ[F] φ
$\Gamma \vdash_{\Lambda} \varphi$ Hilbert-style Deduction on logic $\Lambda$ LO.Modal.Normal.Deduction Γ ⊢ᴹ[Λ] φ

Theorem

  • Soundness of Hilbert-style deduction for 𝐊 extend 𝐓, 𝐁, 𝐃, 𝟒, 𝟓 Extensions (i.e. 𝐊𝐃, 𝐒𝟒, 𝐒𝟓, etc.)
    theorem LO.Modal.Normal.Logic.Hilbert.sounds
        {α : Type u} [Inhabited α]
        {β : Type u} [Inhabited β]
        (Λ : AxiomSet α)
        (f : Frame β) (hf : f ∈ (FrameClass β α Λ))
        {p : LO.Modal.Normal.Formula α}
        (h : ⊢ᴹ[Λ] p) :
        ⊧ᴹᶠ[f] p
    • Consistency
      theorem LO.Modal.Normal.Logic.Hilbert.consistency
          {α : Type u}
          {β : Type u}
          (Λ : AxiomSet α)
          (hf : ∃ f, f ∈ (FrameClass β α Λ)) :
          ⊬ᴹ[Λ]! ⊥
    • WIP: Currently, these theorems was proved where only Λ is 𝐊, 𝐊𝐃, 𝐒𝟒, 𝐒𝟓.
  • Strong Completeness of Hilbert-style deduction for 𝐊 extend 𝐓, 𝐁, 𝐃, 𝟒, 𝟓 Extensions
    def Completeness
      {α β : Type u}
      (Λ : AxiomSet β)
      (𝔽 : FrameClass α)
      := ∀ (Γ : Theory β) (p : Formula β), (Γ ⊨ᴹ[𝔽] p) → (Γ ⊢ᴹ[Λ]! p)
    
    theorem LogicK.Hilbert.completes
      {β : Type u} [inst✝ : DecidableEq β] :
      Completeness
        (𝐊 : AxiomSet β)
        (𝔽((𝐊 : AxiomSet β)) : FrameClass (MaximalConsistentTheory (𝐊 : AxiomSet β)))
    

References

  • J. Han, F. van Doorn, A formalization of forcing and the unprovability of the continuum hypothesis
  • W. Pohlers, Proof Theory: The First Step into Impredicativity
  • P. Hájek, P. Pudlák, Metamathematics of First-Order Arithmetic
  • R. Kaye, Models of Peano arithmetic
  • 田中 一之, ゲーデルと20世紀の論理学
  • 菊池 誠 (編者), 『数学における証明と真理 ─ 様相論理と数学基礎論』
  • P. Blackburn, M. de Rijke, Y. Venema, "Modal Logic"
  • Open Logic Project, "The Open Logic Text"
  • R. Hakli, S. Negri, "Does the deduction theorem fail for modal logic?"
  • G. Boolos, "The Logic of Provability"

About

Lean4 Logic Formalization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Lean 100.0%