forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
228 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
#include "kernel_operator.h" | ||
|
||
using namespace AscendC; | ||
|
||
#define BUFFER_NUM 2 | ||
#define QK8_0 32 | ||
|
||
class QUANTIZE_F16_Q8_0 { | ||
public: | ||
__aicore__ inline QUANTIZE_F16_Q8_0() {} | ||
__aicore__ inline void init(GM_ADDR input, GM_ADDR output, | ||
int64_t *input_ne_ub, size_t *input_nb_ub, | ||
int64_t *output_ne_ub) { | ||
int64_t op_block_num = GetBlockNum(); | ||
int64_t op_block_idx = GetBlockIdx(); | ||
|
||
for (int i = 0; i < 4; i++) { | ||
input_ne[i] = input_ne_ub[i]; | ||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; | ||
|
||
output_ne[i] = output_ne_ub[i]; | ||
} | ||
|
||
output_stride[0] = 1; | ||
for (int i = 1; i < 4; i++) { | ||
output_stride[i] = output_stride[i - 1] * output_ne[i - 1]; | ||
} | ||
|
||
scale_ne = input_ne; | ||
scale_stride[0] = 1; | ||
scale_stride[1] = input_ne[0] / QK8_0; | ||
for (int i = 2; i < 4; i++) { | ||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; | ||
} | ||
|
||
// split input tensor by rows. | ||
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3]; | ||
dr = nr / op_block_num; | ||
|
||
uint64_t tails = nr % op_block_num; | ||
if (op_block_idx < tails) { | ||
dr += 1; | ||
ir = dr * op_block_idx; | ||
} else { | ||
ir = dr * op_block_idx + tails; | ||
} | ||
|
||
group_size_in_row = scale_stride[1]; | ||
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] * | ||
output_ne[3] * sizeof(uint8_t); | ||
|
||
input_gm.SetGlobalBuffer((__gm__ half *)input); | ||
output_gm.SetGlobalBuffer((__gm__ int8_t *)output); | ||
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir * group_size_in_row * sizeof(half))); | ||
|
||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half)); | ||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t)); | ||
pipe.InitBuffer(work_queue, 1, 32); | ||
pipe.InitBuffer(max_queue, 1, 32); | ||
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float)); | ||
pipe.InitBuffer(scale_queue, 1, 32); | ||
pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float)); | ||
} | ||
|
||
__aicore__ inline void copy_in(uint32_t offset) { | ||
LocalTensor<half> input_local = input_queue.AllocTensor<half>(); | ||
DataCopy(input_local, input_gm[offset], QK8_0); | ||
input_queue.EnQue(input_local); | ||
} | ||
|
||
__aicore__ inline void copy_out(uint32_t offset) { | ||
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>(); | ||
DataCopy(output_gm[offset], output_local, QK8_0); | ||
output_queue.FreeTensor(output_local); | ||
} | ||
|
||
__aicore__ inline half calculate_group(int64_t row, int64_t group) { | ||
const int64_t i3 = row / (input_ne[1] * input_ne[2]); | ||
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1]; | ||
const int64_t i1 = | ||
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1]; | ||
|
||
const int64_t input_offset = i1 * input_stride[1] + | ||
i2 * input_stride[2] + | ||
i3 * input_stride[3] + QK8_0 * group; | ||
|
||
const int64_t output_offset = i1 * output_stride[1] + | ||
i2 * output_stride[2] + | ||
i3 * output_stride[3] + QK8_0 * group; | ||
|
||
copy_in(input_offset); | ||
LocalTensor<half> input_local = input_queue.DeQue<half>(); | ||
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>(); | ||
LocalTensor<float> work_local = work_queue.AllocTensor<float>(); | ||
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>(); | ||
LocalTensor<float> max_local = max_queue.AllocTensor<float>(); | ||
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>(); | ||
|
||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0); | ||
Abs(abs_local, cast_local, QK8_0); | ||
ReduceMax(max_local, abs_local, work_local, QK8_0); | ||
|
||
pipe_barrier(PIPE_ALL); | ||
float d = max_local.GetValue(0); | ||
d = d / ((1 << 7) - 1); | ||
if (d != 0) { | ||
Muls(cast_local, cast_local, 1.0f / d, QK8_0); | ||
} | ||
|
||
Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0); | ||
Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0); | ||
Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0); | ||
output_queue.EnQue(output_local); | ||
copy_out(output_offset); | ||
|
||
input_queue.FreeTensor(input_local); | ||
work_queue.FreeTensor(work_local); | ||
abs_queue.FreeTensor(abs_local); | ||
max_queue.FreeTensor(max_local); | ||
cast_queue.FreeTensor(cast_local); | ||
return (half)d; | ||
} | ||
|
||
__aicore__ inline void calculate() { | ||
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>(); | ||
uint32_t scale_local_offset = 0; | ||
uint32_t scale_global_offset = 0; | ||
for (int64_t i = ir; i < ir + dr; i++) { | ||
for (int64_t j = 0; j < group_size_in_row; j++) { | ||
half scale = calculate_group(i, j); | ||
scale_local.SetValue(scale_local_offset++, scale); | ||
if (scale_local_offset == 16) { | ||
scale_local_offset = 0; | ||
// TODO: OPTIMIZE ME | ||
pipe_barrier(PIPE_ALL); | ||
DataCopy(scale_gm[scale_global_offset], scale_local, 16); | ||
pipe_barrier(PIPE_ALL); | ||
scale_global_offset += 16; | ||
} | ||
} | ||
} | ||
|
||
if (scale_local_offset != 0) { | ||
pipe_barrier(PIPE_ALL); | ||
DataCopyExtParams dataCopyParams; | ||
dataCopyParams.blockCount = 1; | ||
dataCopyParams.blockLen = scale_local_offset * sizeof(half); | ||
DataCopyPad(scale_gm[scale_global_offset], scale_local, dataCopyParams); | ||
pipe_barrier(PIPE_ALL); | ||
} | ||
} | ||
|
||
private: | ||
int64_t input_ne[4]; | ||
size_t input_stride[4]; | ||
|
||
int64_t *scale_ne; | ||
size_t scale_stride[4]; | ||
|
||
int64_t output_ne[4]; | ||
size_t output_stride[4]; | ||
|
||
int64_t group_size_in_row; | ||
|
||
int64_t ir; | ||
int64_t dr; | ||
|
||
TPipe pipe; | ||
GlobalTensor<half> input_gm; | ||
GlobalTensor<half> scale_gm; | ||
GlobalTensor<int8_t> output_gm; | ||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; | ||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; | ||
TQue<QuePosition::VECIN, 1> work_queue; | ||
TQue<QuePosition::VECOUT, 1> max_queue; | ||
TQue<QuePosition::VECIN, 1> abs_queue; | ||
TQue<QuePosition::VECOUT, 1> scale_queue; | ||
TQue<QuePosition::VECOUT, 1> cast_queue; | ||
|
||
}; | ||
|
||
template <typename T> | ||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { | ||
auto gm_ptr = (__gm__ uint8_t *)gm; | ||
auto ub_ptr = (uint8_t *)(ub); | ||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { | ||
*ub_ptr = *gm_ptr; | ||
} | ||
} | ||
|
||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0( | ||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, | ||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { | ||
int64_t input_ne_ub[4]; | ||
size_t input_nb_ub[4]; | ||
int64_t output_ne_ub[4]; | ||
|
||
copy_to_ub(input_ne_gm, input_ne_ub, 32); | ||
copy_to_ub(input_nb_gm, input_nb_ub, 32); | ||
copy_to_ub(output_ne_gm, output_ne_ub, 32); | ||
|
||
QUANTIZE_F16_Q8_0 op; | ||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); | ||
op.calculate(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters