forked from NOAA-GFDL/xwmt
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fixed both analytical and MOM6 example data tests
- Introduced `conftest.py` file to download the MOM6 Baltic test dataset (if it does not already exist in the local `/xwmt/tests/` path) and hold various helper methods/functions for the analytical example - Removed download from the ci since it should automatically do this whenever testing the code with `pytest`, whether locally in developer tests or via github's CI workflow. - Now that 2D and 3D transformations are merged into a single process, these are tested together using the new `test_integrate_transformations.py`.
- Loading branch information
Showing
6 changed files
with
292 additions
and
308 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
import pytest | ||
import os | ||
import numpy as np | ||
import xarray as xr | ||
import xgcm | ||
import xwmt | ||
import urllib.request | ||
|
||
fname = 'xwmb_test_data_Baltic_3d.20230830.nc' | ||
ftp_path = 'ftp://ftp.gfdl.noaa.gov/perm/John.Krasting/xwmt/' | ||
if not os.path.isfile(fname): | ||
print(f'Downloading test dataset from {ftp_path}{fname}') | ||
urllib.request.urlretrieve(f'{ftp_path}{fname}', fname) | ||
|
||
class Helpers: | ||
|
||
def __init__(self): | ||
pass | ||
|
||
def idealized_transformations(self, extensive_tendency, lam_profile, Nz=1e3, Nlam=8): | ||
bins = np.linspace(0., 1., int(Nlam)+1) | ||
|
||
ds = xr.Dataset() | ||
ds = ds.assign_coords({ | ||
'z_i': xr.DataArray(np.linspace(0., 1., int(Nz)+1), dims=("z_i",)), | ||
'z_l': xr.DataArray(np.linspace(1. /Nz, 1. - 1. /Nz, int(Nz)), dims=("z_l",)), | ||
}) | ||
ds = ds.assign_coords({'dz': xr.DataArray(np.diff(ds.z_i.values), dims=("z_l",))}) | ||
extensive_tendency_method = getattr(self, extensive_tendency) | ||
ds['tendency_name'] = xr.DataArray(extensive_tendency_method(ds.z_i.values), coords=(ds.z_l,))*ds.dz | ||
lam_profile_method = getattr(self, lam_profile) | ||
ds['temperature'] = xr.DataArray(lam_profile_method(ds.z_l.values), coords=(ds.z_l,)) | ||
|
||
# expand to horizontal dimension and add grid metrics | ||
ds = ds.expand_dims(dim=('x', 'y')).assign_coords({'x':xr.DataArray([1.], dims=('x',)), 'y':xr.DataArray([1.], dims=('y',))}) | ||
ds = ds.assign_coords({'rA': xr.DataArray([[1.]], dims=('x','y',))}) | ||
|
||
metrics = { | ||
('X', 'Y'): ['rA'] # Areas | ||
} | ||
coords = { | ||
'X': {'center': 'x',}, | ||
'Y': {'center': 'y',}, | ||
'Z': {'center': 'z_l', 'outer': 'z_i'}, | ||
} | ||
grid = xgcm.Grid(ds, coords=coords, metrics=metrics, periodic=False, autoparse_metadata=False) | ||
|
||
budget_dict = { | ||
'mass': { | ||
'lambda': None, | ||
'rhs': {}, | ||
'lhs': {} | ||
}, | ||
'heat': { | ||
'lambda': 'temperature', | ||
'lhs': {'tendency':'tendency_name'}, | ||
'rhs': {} | ||
}, | ||
'salt': { | ||
'lambda': None, | ||
'rhs': {}, | ||
'lhs': {} | ||
} | ||
} | ||
|
||
wmt = xwmt.WaterMassTransformations(grid, budget_dict, cp=1., rho_ref=1., method="xgcm") | ||
T = wmt.integrate_transformations("heat", bins=bins, sum_components=False) | ||
T = T.assign_coords({'temperature_i': xr.DataArray(bins, dims=("temperature_i",))}) | ||
return T | ||
|
||
def mean_absolute_relative_errors(self, wmt_xwmt, wmt_local_exact, wmt_layer_exact): | ||
def absolute_relative_errors(wmt, wmt_ref): | ||
return np.abs((wmt - wmt_ref)/wmt_ref).where(np.abs(wmt_ref)>1.e-5).mean(skipna=True).values | ||
wmt_local_exact_method = getattr(self, wmt_local_exact) | ||
wmt_layer_exact_method = getattr(self, wmt_layer_exact) | ||
return ( | ||
absolute_relative_errors( | ||
wmt_xwmt['tendency'], | ||
wmt_layer_exact_method(wmt_xwmt.temperature_i.values) | ||
), | ||
absolute_relative_errors( | ||
wmt_xwmt['tendency'], | ||
wmt_local_exact_method(wmt_xwmt.temperature.values) | ||
) | ||
) | ||
|
||
# Extensive (layer-integrated) analytical tendency profiles | ||
def diffusive_extensive_tendency(self, z_i): | ||
def f(z): | ||
return -np.cos(2*np.pi*z)/(2*np.pi) | ||
return np.diff(f(z_i))/np.diff(z_i) | ||
|
||
def constant_extensive_tendency(self, z_i): | ||
return np.diff(z_i)/np.diff(z_i) | ||
|
||
def constant_plus_diffusion_tendency(self, z_i): | ||
return self.diffusive_extensive_tendency(z_i) + self.constant_extensive_tendency(z_i) | ||
|
||
def differential_heating_layer(self, z_i): | ||
sign = 2*np.float64(z_i>0.5)-1 | ||
out = np.diff(sign*z_i)/np.diff(z_i) | ||
out[(z_i[:-1]<=0.5)&(0.5<=z_i[1:])] = 0. | ||
return out | ||
|
||
# Stratification profiles | ||
def lam_const_dlamdz(self, z): | ||
return z | ||
|
||
def lam_linear_dlamdz(self, z): | ||
return z**2 | ||
|
||
def lam_overturning_dlamdz(self, z): | ||
return 1 - (2*z - 1)**2 | ||
|
||
def lam_vanishing_dlamdz(self, z): | ||
sign = 2*np.float64(z>0.5)-1 | ||
return (1 + sign*(2*z - 1)**2)/2. | ||
|
||
# Analytical point-wise water mass transformations | ||
def constant_plus_diffusion_local_wmt_dlamdz_constant(self, lam): | ||
return np.sin(2*np.pi*lam) + 1. | ||
|
||
def constant_plus_diffusion_local_wmt_dlamdz_linear(self, lam): | ||
return (np.sin(2*np.pi*np.sqrt(lam)) + 1.)/(2*np.sqrt(lam)) | ||
|
||
def constant_plus_diffusion_local_wmt_dlamdz_overturning(self, lam): | ||
return 1/(2*np.sqrt(1-lam)) | ||
|
||
def differential_heating_local_wmt_dlamdz_vanishing(self, lam): | ||
sign = 2*np.float64(lam>0.5)-1 | ||
return sign/(2*np.sqrt(sign*(2*lam-1))) | ||
|
||
# Analytical layer-averaged water mass transformations | ||
def constant_plus_diffusion_layer_wmt_dlamdz_constant(self, lam_bins): | ||
def f(lam): | ||
return -np.cos(2*np.pi*lam)/(2*np.pi) + lam | ||
return np.diff(f(lam_bins))/np.diff(lam_bins) | ||
|
||
def constant_plus_diffusion_layer_wmt_dlamdz_linear(self, lam_bins): | ||
def f(lam): | ||
return -np.cos(2*np.pi*np.sqrt(lam))/(2*np.pi) + np.sqrt(lam) | ||
return np.diff(f(lam_bins))/np.diff(lam_bins) | ||
|
||
def constant_plus_diffusion_layer_wmt_dlamdz_overturning(self, lam_bins): | ||
def f(lam): | ||
return 1 - np.sqrt(1 - lam) | ||
return np.diff(f(lam_bins))/np.diff(lam_bins) | ||
|
||
def differential_heating_layer_wmt_dlamdz_vanishing(self, lam_bins): | ||
def f(lam): | ||
sign = 2*np.float64(lam>0.5)-1 | ||
u = 1 + sign*np.sqrt(sign*(2*lam-1)) | ||
return sign*0.5*u | ||
out = np.diff(f(lam_bins))/np.diff(lam_bins) | ||
out[(lam_bins[:-1]<=0.5)&(0.5<=lam_bins[1:])] = np.nan | ||
return out | ||
|
||
exps = { | ||
"extensive_tendency": [ | ||
"constant_plus_diffusion_tendency", | ||
"constant_plus_diffusion_tendency", | ||
"constant_plus_diffusion_tendency", | ||
"differential_heating_layer" | ||
], | ||
"lam_profile": [ | ||
"lam_const_dlamdz", | ||
"lam_linear_dlamdz", | ||
"lam_overturning_dlamdz", | ||
"lam_vanishing_dlamdz" | ||
], | ||
"local_wmt": [ | ||
"constant_plus_diffusion_local_wmt_dlamdz_constant", | ||
"constant_plus_diffusion_local_wmt_dlamdz_linear", | ||
"constant_plus_diffusion_local_wmt_dlamdz_overturning", | ||
"differential_heating_local_wmt_dlamdz_vanishing" | ||
], | ||
"layer_wmt":[ | ||
"constant_plus_diffusion_layer_wmt_dlamdz_constant", | ||
"constant_plus_diffusion_layer_wmt_dlamdz_linear", | ||
"constant_plus_diffusion_layer_wmt_dlamdz_overturning", | ||
"differential_heating_layer_wmt_dlamdz_vanishing" | ||
] | ||
} | ||
|
||
@pytest.fixture | ||
def helpers(): | ||
return Helpers() |
Oops, something went wrong.