-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
757 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
|
||
|
||
######################################################################## | ||
dir_mNSF_functions='/users/ywang/Hansen_projects/scRNA/mNSF_2023_10_20/' | ||
#dir_mNSF_functions='/users/ywang/Hansen_projects/scRNA/mNSF_2023_10_20/mNSF-main' | ||
dir_output="/dcs04/hansen/data/ywang/ST/DLPFC/PASTE_out_keepAll_scTransform/" | ||
|
||
######################################################################## | ||
######################################################################## | ||
import sys | ||
sys.path.append(dir_mNSF_functions) | ||
|
||
#from scanpy import read_h5ad | ||
|
||
import random | ||
import mNSF | ||
|
||
from mNSF import process_multiSample | ||
|
||
from mNSF.NSF import preprocess | ||
from mNSF.NSF import misc | ||
#from mNSF.NSF import visualize | ||
#from mNSF import training_multiSample | ||
from mNSF import training_multiSample | ||
from mNSF import process_multiSample | ||
from mNSF.NSF import visualize | ||
|
||
#from tensorflow.data import Dataset | ||
|
||
from os import path | ||
#import pandas | ||
import os | ||
import numpy as np | ||
import tensorflow as tf | ||
import pandas as pd | ||
import sys | ||
import pickle | ||
|
||
from scanpy import pp | ||
|
||
sys.path.append(dir_output) | ||
os.chdir(dir_output) | ||
|
||
|
||
|
||
######################################################################## | ||
######################################################################## | ||
L=10 | ||
|
||
|
||
nsample=12 | ||
|
||
mpth = path.join("models") | ||
misc.mkdir_p(mpth) | ||
pp = path.join(mpth,"pp",str(2))#list_fit[0].generate_pickle_path("constant",base=mpth) | ||
misc.mkdir_p(pp) | ||
|
||
|
||
########################################################################3 | ||
################### step 0 Data loading | ||
######################################################################## | ||
|
||
list_D=list() | ||
list_X=list() | ||
|
||
for ksample in range(0,nsample): | ||
Y=pd.read_csv(path.join('//dcs04/hansen/data/ywang/ST/DLPFC/processed_Data//Y_features_sele_sample'+str(ksample+1)+'_500genes.csv')) | ||
X=pd.read_csv(path.join('//dcs04/hansen/data/ywang/ST/DLPFC/processed_Data///X_allSpots_sample'+str(ksample+1)+'.csv')) | ||
D=process_multiSample.get_D(X,Y) | ||
list_D.append(D) | ||
list_X.append(D["X"]) | ||
|
||
|
||
list_Dtrain=process_multiSample.get_listDtrain(list_D) | ||
list_sampleID=process_multiSample.get_listSampleID(list_D) | ||
|
||
|
||
# inducing points, 70% of total spots for each sample | ||
for ksample in range(0,nsample): | ||
random.seed(111) | ||
ninduced=round(list_D[ksample]['X'].shape[0] * 0.35) | ||
random.seed(222) | ||
print(ninduced) | ||
D=list_D[ksample] | ||
rd_ = random.sample(range(0, D['X'].shape[0]), ninduced) | ||
list_D[ksample]["Z"]=D['X'][rd_ ,:] | ||
|
||
|
||
|
||
|
||
|
||
########################################################################3 | ||
################### step 1 initialize model | ||
######################################################################## | ||
#lik="nb" | ||
|
||
list_fit=process_multiSample.ini_multiSample(list_D,L,"nb") | ||
|
||
|
||
######################################################################## | ||
################### step 2 fit model | ||
######################################################################## | ||
|
||
|
||
list_fit=training_multiSample.train_model_mNSF(list_fit,pp,list_Dtrain,list_D) | ||
|
||
|
||
|
||
# save the fitted model | ||
process_multiSample.save_object(list_fit, 'list_fit_nb_12samples_szMean_L10_fullData.pkl') | ||
|
||
|
||
|
||
######################################################################## | ||
with open( 'list_fit_nb_12samples_szMean_L10_fullData.pkl', 'rb') as inp: | ||
list_fit = pickle.load(inp) | ||
|
||
|
||
|
||
######################################################################## | ||
################### step 3 save and plot results | ||
######################################################################## | ||
inpf12=process_multiSample.interpret_npf_v3(list_fit,list_X,S=100,lda_mode=False) | ||
|
||
|
||
W = inpf12["loadings"] | ||
#Wdf=pd.DataFrame(W*inpf12["totals1" | ||
|
||
|
||
|
||
|
||
|
||
Wdf=pd.DataFrame(W*inpf12["totalsW"][:,None], columns=range(1,L+1)) | ||
Wdf.to_csv(path.join("loadings_spde_nb_szMean_12samples_L10_fullData.csv")) | ||
|
||
|
||
|
||
## save the factors | ||
#inpf12 = process_multiSample.interpret_npf_v3(list_fit,list_X,S=100,lda_mode=False) | ||
Factors = inpf12["factors"][:,0:L] | ||
|
||
for k in range(0,nsample): | ||
indices=list_sampleID[k] | ||
indices=indices.astype(int) | ||
Factors_df = pd.DataFrame(Factors[indices,:]) | ||
Factors_df.to_csv(path.join(dir_output,"factors_nb_szMean_sample_s"+str(k+1)+"_L10_fullData.csv")) | ||
|
||
|
||
# | ||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
|
||
### load pacakges | ||
library(tidyverse) | ||
library(ggplot2) | ||
library(Matrix) | ||
# library(Rmisc)# | ||
library(ggforce)# | ||
# library(rjson)# | ||
library(cowplot) | ||
library(RColorBrewer) | ||
library(grid) | ||
require(nnet) | ||
# require(nnet) | ||
|
||
group.colors <- c(Layer1 = "#FC8D62", Layer2 = "#FFD92F", Layer3 ="#A6D854", Layer4 = "#66C2A5", Layer5 = "#00A9FF", | ||
Layer6="#8DA0CB",WM="#E78AC3") | ||
|
||
|
||
####### | ||
library(RColorBrewer) | ||
library(ggplot2) | ||
# library(readbitmap)# | ||
myPalette_ <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) | ||
# https://ggplot2-book.org/scale-colour.html | ||
myPalette = scale_fill_brewer(palette = "Set2") | ||
|
||
####### | ||
# myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) | ||
setwd("/dcs04/hansen/data/ywang/ST/DLPFC/PASTE_out_dist005_szMean/") | ||
|
||
# setwd("/dcs04/hansen/data/ywang/ST/DLPFC/PASTE_out_keepAll/") | ||
dir_processedData = "/dcs04/hansen/data/ywang/ST/DLPFC/processed_Data_keepAll/" | ||
|
||
# list_sample_pair=list(c(1,2),c(2,3), | ||
# c(3,4),c(5,6),c(6,7),c(7,8),c(9,10),c(10,11),c(11,12)) | ||
list_sample_pair=list(c(1,2), | ||
c(3,4),c(5,6),c(7,8),c(9,10),c(11,12)) | ||
|
||
####################################### | ||
list_layer=list() | ||
# list_rownames_kpSpots_=list() | ||
|
||
|
||
####################################### s1 | ||
for(kpair in 1:length(list_sample_pair)){ | ||
list_layer[[kpair]]=list() | ||
list_rownames_kpSpots_[[kpair]]=list() | ||
|
||
sample_s1=list_sample_pair[[kpair]][1] | ||
sample_s2=list_sample_pair[[kpair]][2] | ||
# rownames_allSpots = readRDS(paste0(dir_processedData,"rownames_allSpots", | ||
# "_S",sample_s1,"_",sample_s2,"_filterDist005_corrected.rds")) | ||
|
||
# rownames_kpSpots_s1= readRDS(paste0(dir_processedData,"rownames_kpSpots", | ||
# "_S",sample_s1,"_",sample_s2,"_filterDist005_s1_corrected.rds")) | ||
# rownames_kpSpots_s2= readRDS(paste0(dir_processedData,"rownames_kpSpots", | ||
# "_S",sample_s1,"_",sample_s2,"_filterDist005_s2_corrected.rds")) | ||
# | ||
# rownames_kpSpots = c(rownames_kpSpots_s1, rownames_kpSpots_s2) | ||
# length(rownames_kpSpots) | ||
# # 7112 | ||
|
||
# load layers | ||
# save(layer, | ||
# file=paste0("layer_sample_Sample",j,".RData")) | ||
load(paste0("//dcs04/hansen/data/ywang/archive/scRNA/Oct5_2021_Lukas_data_more_Genes/out/layer_sample_Sample",sample_s1,".RData")) | ||
# save(layer_sample_tmp,file=paste0("layer_sample",j,".RData")) | ||
layer_sample_tmp__s1=layer[] | ||
|
||
load(paste0("//dcs04/hansen/data/ywang/archive/scRNA/Oct5_2021_Lukas_data_more_Genes/out/layer_sample_Sample",sample_s2,".RData")) | ||
# save(layer_sample_tmp,file=paste0("layer_sample",j,".RData")) | ||
layer_sample_tmp__s2=layer[] | ||
|
||
layer_sample_tmp__=c(layer_sample_tmp__s1,layer_sample_tmp__s2) | ||
# names(layer_sample_tmp__)=rownames_allSpots | ||
|
||
# layer_sample_tmp__s1=layer_sample_tmp__[rownames_kpSpots_s1] | ||
# layer_sample_tmp__s2=layer_sample_tmp__[rownames_kpSpots_s2] | ||
|
||
# layer_sample_tmp__ = c(layer_sample_tmp__s1, layer_sample_tmp__s2) | ||
# length(layer_sample_tmp__) | ||
|
||
list_layer[[kpair]][[1]]=layer_sample_tmp__s1 | ||
list_layer[[kpair]][[2]]=layer_sample_tmp__s2 | ||
|
||
|
||
|
||
# list_rownames_kpSpots_[[kpair]][[1]]=rownames_kpSpots_s1 | ||
# list_rownames_kpSpots_[[kpair]][[2]]=rownames_kpSpots_s2 | ||
|
||
} | ||
|
||
make_plot<-function(pos,factor_mat,range_perFactor_, | ||
layer_sample_tmp___,samplename_){ | ||
plots_l = list() | ||
for (i in 1:ncol(factor_mat)) { | ||
# dim(a) | ||
df_tmp=data.frame( imagerow=pos[,1], | ||
imagecol=pos[,2], | ||
fill_tmp=factor_mat[,i], | ||
layer=layer_sample_tmp___) | ||
df_tmp=df_tmp[!is.na(df_tmp$layer),] | ||
df_tmp$layer = factor(df_tmp$layer, levels = c('WM',"Layer6","Layer5","Layer4","Layer3", "Layer2","Layer1")) | ||
|
||
|
||
plot_tmp = ggplot(df_tmp,aes(x=imagecol,y=imagerow,fill=fill_tmp)) + | ||
# geom_spatial(data=images_tibble[i,], aes(grob=grob), x=0.5, y=0.5)+ | ||
geom_point(shape = 21, colour = "black", size = 2, stroke = NA)+ | ||
coord_cartesian(expand=FALSE)+ | ||
# scale_fill_gradientn(colours = myPalette_(100))+ | ||
scale_fill_gradientn(colours = myPalette_(100), limits=range_perFactor_[[i]])+ | ||
|
||
xlab("") + | ||
ylab("") + | ||
ggtitle(paste0(samplename_,", mNSF factor ",i))+ | ||
labs(fill = paste0(" "))+ | ||
theme_set(theme_bw(base_size = 10))+ | ||
theme(panel.grid.major = element_blank(), | ||
panel.grid.minor = element_blank(), | ||
panel.background = element_blank(), | ||
axis.line = element_line(colour = "black"), | ||
axis.text = element_blank(), | ||
axis.ticks = element_blank()) | ||
|
||
# if(type_tmp=="l"){ | ||
plots_l[[i]]=plot_tmp | ||
# }else{ | ||
|
||
|
||
} | ||
plots_l[[i+1]]=ggplot(df_tmp,aes(x=imagecol,y=imagerow,fill=layer)) + | ||
geom_point(shape = 21, colour = "black", size = 2, stroke = NA)+ | ||
coord_cartesian(expand=FALSE)+ | ||
xlab("") + | ||
ylab("") + | ||
ggtitle(paste0("layer "))+ | ||
labs(fill = paste0(" "))+ | ||
theme_set(theme_bw(base_size = 10))+ | ||
theme(panel.grid.major = element_blank(), | ||
panel.grid.minor = element_blank(), | ||
panel.background = element_blank(), | ||
axis.line = element_line(colour = "black"), | ||
axis.text = element_blank(), | ||
axis.ticks = element_blank())+ | ||
|
||
scale_fill_manual(values=group.colors) | ||
plots_l | ||
} | ||
|
||
range_perFactor = list() | ||
for(ksample in 1:12){ | ||
factor_mat_tmp=read.csv(paste0("/dcs04/hansen/data/ywang/ST/DLPFC/PASTE_out_keepAll_scTransform/factors_nb_szMean_sample_s",ksample,"_L10_fullData.csv"),header=T) | ||
factor_mat_tmp=factor_mat_tmp[,-1] | ||
for(l in 1:ncol(factor_mat_tmp)){ | ||
if(ksample==1){ range_perFactor[[l]]=range(factor_mat_tmp[,l])}else{ | ||
range_perFactor[[l]]=range(c(range_perFactor[[l]], factor_mat_tmp[,l])) | ||
} | ||
|
||
} | ||
} | ||
|
||
pdf(paste0("LdaFalse_L10_szMean_s1To12_fullData.pdf"),height=3,width=18/6*8*3.2) | ||
for(kpair in 1:6){ | ||
for(k in 1:2){ | ||
ksample = (kpair-1)*2+ k | ||
a_=read.csv(paste0("/dcs04/hansen/data/ywang/ST/DLPFC/PASTE_out_keepAll_scTransform/factors_nb_szMean_sample_s",ksample,"_L10_fullData.csv"),header=T) | ||
a_ = a_[,-1] | ||
layers=list_layer[[kpair]][[k]] | ||
X=read.csv(paste0('//dcs04/hansen/data/ywang/ST/DLPFC/processed_Data///X_allSpots_sample',ksample,'.csv')) | ||
p1= make_plot(X, a_, range_perFactor,layers, paste0("sample ",ksample)) | ||
print(plot_grid(plotlist = p1,nrow=1)) | ||
} | ||
} | ||
dev.off() | ||
|
||
|
||
|
||
|
||
pdf(paste0("LdaFalse_L10_szMean_s1To12_s1_5_7_9_fullData.pdf"),height=3,width=18/6*8*3.2) | ||
for(kpair in c(1,3,4,5)){ | ||
for(k in 1){ | ||
ksample = (kpair-1)*2+ k | ||
a_=read.csv(paste0("/dcs04/hansen/data/ywang/ST/DLPFC/PASTE_out_keepAll_scTransform/factors_nb_szMean_sample_s",ksample,"_L10_fullData.csv"),header=T) | ||
a_ = a_[,-1] | ||
layers=list_layer[[kpair]][[k]] | ||
rownames_kpSpots=list_rownames_kpSpots_[[kpair]][[k]] | ||
p1= make_plot(rownames_kpSpots, a_,range_perFactor, layers, paste0("sample ",ksample)) | ||
print(plot_grid(plotlist = p1,nrow=1)) | ||
} | ||
} | ||
dev.off() | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.