-
Notifications
You must be signed in to change notification settings - Fork 97
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #329 from MortenHolmRep/multiclass
Multi-class classification implementation
- Loading branch information
Showing
8 changed files
with
526 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
path: /groups/icecube/petersen/GraphNetDatabaseRepository/Leon2022_DataAndMC_CSVandDB_StoppedMuons/last_one_lvl3MC.db | ||
pulsemaps: | ||
- SRTInIcePulses | ||
features: | ||
- dom_x | ||
- dom_y | ||
- dom_z | ||
- dom_time | ||
- charge | ||
- rde | ||
- pmt_area | ||
truth: | ||
- energy | ||
- position_x | ||
- position_y | ||
- position_z | ||
- azimuth | ||
- zenith | ||
- pid | ||
- elasticity | ||
- sim_type | ||
- interaction_type | ||
index_column: event_no | ||
truth_table: truth | ||
seed: 21 | ||
selection: | ||
test_nu_e: 10000 random events ~ event_no % 5 == 0 & abs(pid) == 12 | ||
test_nu_mu: 10000 random events ~ event_no % 5 == 0 & abs(pid) == 14 | ||
test_nu_tau: 10000 random events ~ event_no % 5 == 0 & abs(pid) == 16 | ||
test_mu: 10000 random events ~ event_no % 5 == 0 & abs(pid) == 13 | ||
test_noise: 10000 random events ~ event_no % 5 == 0 & abs(pid) == 1 | ||
|
||
validation_nu_e: 10000 random events ~ event_no % 5 == 1 & abs(pid) == 12 | ||
validation_nu_mu: 10000 random events ~ event_no % 5 == 1 & abs(pid) == 14 | ||
validation_nu_tau: 10000 random events ~ event_no % 5 == 1 & abs(pid) == 16 | ||
validation_mu: 10000 random events ~ event_no % 5 == 1 & abs(pid) == 13 | ||
validation_noise: 10000 random events ~ event_no % 5 == 1 & abs(pid) == 1 | ||
|
||
train_nu_e: 50000 random events ~ event_no % 5 > 1 & abs(pid) == 12 | ||
train_nu_mu: 50000 random events ~ event_no % 5 > 1 & abs(pid) == 14 | ||
train_nu_tau: 50000 random events ~ event_no % 5 > 1 & abs(pid) == 16 | ||
train_mu: 50000 random events ~ event_no % 5 > 1 & abs(pid) == 13 | ||
train_noise: 50000 random events ~ event_no % 5 > 1 & abs(pid) == 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
arguments: | ||
class_options: {1: 0, -1: 0, 13: 1, -13: 1, 12: 2, -12: 2, 14: 2, -14: 2, 16: 2, -16: 2} | ||
coarsening: null | ||
detector: | ||
ModelConfig: | ||
arguments: | ||
graph_builder: | ||
ModelConfig: | ||
arguments: {columns: null, device: null, nb_nearest_neighbours: 8} | ||
class_name: KNNGraphBuilder | ||
scalers: null | ||
class_name: IceCubeDeepCore | ||
gnn: | ||
ModelConfig: | ||
arguments: | ||
add_global_variables_after_pooling: false | ||
dynedge_layer_sizes: null | ||
features_subset: null | ||
global_pooling_schemes: [min, max, mean, sum] | ||
nb_inputs: 7 | ||
nb_neighbours: 8 | ||
post_processing_layer_sizes: null | ||
readout_layer_sizes: null | ||
class_name: DynEdge | ||
optimizer_class: '!class torch.optim.adam Adam' | ||
optimizer_kwargs: {eps: 0.001, lr: 1e-05} | ||
scheduler_class: '!class torch.optim.lr_scheduler ReduceLROnPlateau' | ||
scheduler_config: {frequency: 1, monitor: val_loss} | ||
scheduler_kwargs: {patience: 5} | ||
tasks: | ||
- ModelConfig: | ||
arguments: | ||
hidden_size: 128 | ||
loss_function: | ||
ModelConfig: | ||
arguments: {options=general_config["class_options"]} | ||
class_name: CrossEntropyLoss | ||
loss_weight: null | ||
target_labels: pid | ||
transform_inference: '!lambda x: softmax(x, dim=-1)' | ||
transform_prediction: null | ||
transform_support: null | ||
transform_target: null | ||
class_name: MulticlassClassificationTask | ||
class_name: StandardModel |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
"""Example of training Model.""" | ||
|
||
import os | ||
from typing import Dict, Any | ||
|
||
from pytorch_lightning.callbacks import EarlyStopping | ||
from pytorch_lightning.loggers import WandbLogger | ||
|
||
from graphnet.data.dataloader import DataLoader | ||
from graphnet.models import Model | ||
from graphnet.training.callbacks import ProgressBar | ||
from graphnet.utilities.config import ( | ||
DatasetConfig, | ||
ModelConfig, | ||
TrainingConfig, | ||
) | ||
|
||
# Make sure W&B output directory exists | ||
WANDB_DIR = "./wandb/" | ||
os.makedirs(WANDB_DIR, exist_ok=True) | ||
|
||
# Initialise Weights & Biases (W&B) run | ||
wandb_logger = WandbLogger( | ||
project="example-script", | ||
entity="graphnet-team", | ||
save_dir=WANDB_DIR, | ||
log_model=True, | ||
) | ||
|
||
|
||
def train(general_config: Dict[str, Any]) -> None: | ||
"""Train model with configuration given by `config`.""" | ||
# Configuration | ||
config = TrainingConfig( | ||
target="pid", | ||
early_stopping_patience=5, | ||
fit={"gpus": [0], "max_epochs": 5}, | ||
dataloader={"batch_size": 512, "num_workers": 10}, | ||
) | ||
|
||
run_name = "dynedge_{}_classification_example".format(config.target) | ||
|
||
# Log configuration to W&B | ||
wandb_logger.experiment.config.update(config) | ||
|
||
# Construct dataloaders | ||
dataset_config = DatasetConfig.load( | ||
"configs/datasets/" + general_config["dataset"] + ".yml" | ||
) | ||
# dataloader_test, dataloader_valid, .. | ||
dataloaders = DataLoader.from_dataset_config( | ||
dataset_config, | ||
**config.dataloader, | ||
) | ||
wandb_logger.experiment.config.update(dataset_config.as_dict()) | ||
|
||
# Build model | ||
model_config = ModelConfig.load( | ||
"configs/models/" + general_config["model"] + ".yml" | ||
) | ||
model = Model.from_config(model_config, trust=True) | ||
wandb_logger.experiment.config.update(model_config.as_dict()) | ||
|
||
# Training model | ||
callbacks = [ | ||
EarlyStopping( | ||
monitor="val_loss", | ||
patience=config.early_stopping_patience, | ||
), | ||
ProgressBar(), | ||
] | ||
|
||
model.fit( | ||
dataloaders["train"], | ||
dataloaders["validation"], | ||
callbacks=callbacks, | ||
logger=wandb_logger, | ||
**config.fit, | ||
) | ||
|
||
# Get predictions | ||
if isinstance(config.target, str): | ||
prediction_columns = [ | ||
config.target + "_noise_pred", | ||
config.target + "_muon_pred", | ||
config.target + "_neutrino_pred", | ||
] | ||
additional_attributes = [config.target] | ||
else: | ||
prediction_columns = [target + "_pred" for target in config.target] | ||
additional_attributes = config.target | ||
|
||
results = model.predict_as_dataframe( | ||
dataloaders["test"], | ||
prediction_columns=prediction_columns, | ||
additional_attributes=additional_attributes + ["event_no"], | ||
) | ||
|
||
# Save predictions and model to file | ||
db_name = dataset_config.path.split("/")[-1].split(".")[0] | ||
path = os.path.join(general_config["archive"], db_name, run_name) | ||
|
||
results.to_csv(f"{path}/results.csv") | ||
model.save_state_dict(f"{path}/state_dict.pth") | ||
model.save(f"{path}/model.pth") | ||
|
||
|
||
def main() -> None: | ||
"""Run example.""" | ||
# General configuration | ||
general_config = { | ||
"dataset": "PID_classification_last_one_lvl3MC.yml", | ||
"model": "dynedge_PID_Classification_noise_muon_neutrino_example.yml", | ||
"archive": "/groups/icecube/petersen/GraphNetDatabaseRepository/example_results/train_classification_model", | ||
} | ||
|
||
train(general_config) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.