Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Peter Handover #29

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions .gitignore
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,20 @@
__pycache__/
*.py[cod]
*$py.class
*.csv
*.png
*.pdf
*.sh
*.zst
*.out
*.err
*.yaml
*.ckpt
*.json
*.txt
*.wandb
lightning_logs/*
wandb/*

# C extensions
*.so
Expand Down
Empty file modified CODEOWNERS
100644 → 100755
Empty file.
Empty file modified LICENSE
100644 → 100755
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sqlite3 as sql\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"from pandas import cut, read_sql\n",
"import pickle as pkl\n",
"from random import choices\n",
"from sklearn import metrics\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.colors as colors\n",
"import scipy.optimize as optimize"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"indir = \"/groups/icecube/petersen/GraphNetDatabaseRepository/osc_next_database_Peter_and_Morten/merged_database/osc_next_level3_v2.00_genie_muongun_noise_120000_140000_160000_130000_888003.db\"\n",
"indir_retro = \"/groups/icecube/petersen/GraphNetDatabaseRepository/osc_next_database_Peter_and_Morten/merged_database/osc_next_level3_v2.00_genie_muongun_noise_120000_140000_160000_130000_888003_retro.db\"\n",
"\n",
"#Load in truth data\n",
"with sql.connect(indir) as con:\n",
" query = \"\"\"\n",
" SELECT\n",
" event_no, RunID, SubrunID, EventID, SubEventID\n",
" FROM \n",
" truth\n",
" \"\"\"\n",
" truth = read_sql(query,con)\n",
"\n",
"#Load in truth data\n",
"with sql.connect(indir_retro) as con:\n",
" query = \"\"\"\n",
" SELECT\n",
" event_no, RunID, SubrunID, EventID, SubEventID\n",
" FROM \n",
" truth\n",
" \"\"\"\n",
" truth_retro = read_sql(query,con)\n",
"\n",
"with sql.connect(indir_retro) as con:\n",
" query = \"\"\"\n",
" SELECT\n",
" event_no, osc_weight\n",
" FROM \n",
" retro\n",
" \"\"\"\n",
" retro = read_sql(query,con)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"truth.rename(columns = {'event_no':'old_event_no'}, inplace = True)\n",
"\n",
"merged_df = pd.merge(truth, truth_retro, on=['RunID', 'SubrunID', 'EventID', 'SubEventID'])\n",
"\n",
"#merged_df[merged_df['_merge'] == 'both']"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" old_event_no RunID SubrunID EventID SubEventID event_no\n",
"0 0 888003.0 5450.0 0.0 0.0 55418455\n",
"1 1 888003.0 5450.0 1.0 0.0 55418456\n",
"2 2 888003.0 5450.0 3.0 0.0 55418457\n",
"3 3 888003.0 5450.0 5.0 0.0 55418458\n",
"4 4 888003.0 5450.0 11.0 0.0 55418459\n",
"5 5 888003.0 5450.0 20.0 0.0 55418460\n",
"6 6 888003.0 5450.0 22.0 0.0 55418461\n",
"7 7 888003.0 5450.0 23.0 0.0 55418462\n",
"8 8 888003.0 5450.0 26.0 0.0 55418464\n",
"9 9 888003.0 5450.0 28.0 0.0 55418465\n",
" old_event_no RunID SubrunID EventID SubEventID\n",
"4 4 888003.0 5450.0 11.0 0.0\n",
" event_no RunID SubrunID EventID SubEventID\n",
"55418459 55418459 888003.0 5450.0 11.0 0.0\n"
]
}
],
"source": [
"print(merged_df.head(10))\n",
"print(truth[truth['old_event_no']==4])\n",
"print(truth_retro[truth_retro['event_no']==55418459])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"final_merged_df = pd.merge(merged_df, retro, on=['event_no'])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" old_event_no RunID SubrunID EventID SubEventID event_no osc_weight\n",
"0 0 888003.0 5450.0 0.0 0.0 55418455 0.003054\n",
"1 1 888003.0 5450.0 1.0 0.0 55418456 0.003054\n",
"2 2 888003.0 5450.0 3.0 0.0 55418457 0.003054\n",
"3 3 888003.0 5450.0 5.0 0.0 55418458 0.003054\n",
"4 4 888003.0 5450.0 11.0 0.0 55418459 0.003054\n",
"5 5 888003.0 5450.0 20.0 0.0 55418460 0.003054\n",
"6 6 888003.0 5450.0 22.0 0.0 55418461 0.003054\n",
"7 7 888003.0 5450.0 23.0 0.0 55418462 0.003054\n",
"8 8 888003.0 5450.0 26.0 0.0 55418464 0.003054\n",
"9 9 888003.0 5450.0 28.0 0.0 55418465 0.003054\n",
"55418458 0.003054\n",
"Name: osc_weight, dtype: float64\n"
]
}
],
"source": [
"print(final_merged_df.head(10))\n",
"print(retro['osc_weight'][retro['event_no']==55418458\t])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"output_location = \"/groups/icecube/petersen/GraphNetDatabaseRepository/multi_classification_track_cascade_neutrino/using_MP_lvl3/inference/event_selections/osc_weights.csv\"\n",
"final_merged_df.to_csv(output_location,index=False,columns=('old_event_no','osc_weight'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "graphnet",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.15"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f8d6fa195492ab7b6c0e437eb2aec4cd83dac16aa95613845cf8e9e173beed9d"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading