Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix print for verbose=False #573

Merged
merged 1 commit into from
Jan 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion jaxopt/_src/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -273,7 +273,7 @@ def log_info(self, state, error_name='Error', additional_info={}):
jax.debug.print(
"INFO: jaxopt." + name + ": " + \
"Iter: {} " + \
error_name + " (stop. crit.): {} " + \
error_name + " (stopping criterion): {} " + \
other_info_kw,
state.iter_num,
state.error,
Expand Down
2 changes: 1 addition & 1 deletion jaxopt/_src/bfgs.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@ def __post_init__(self):
max_stepsize=self.max_stepsize,
jit=self.jit,
unroll=unroll,
verbose=int(self.verbose)-1
verbose=max(int(self.verbose)-1, 0)
)
self.run_ls = self.linesearch_solver.run

Expand Down
2 changes: 1 addition & 1 deletion jaxopt/_src/broyden.py
Original file line number Diff line number Diff line change
Expand Up @@ -328,7 +328,7 @@ def ls_fun_with_aux(params, *args, **kwargs):
jit=self.jit,
unroll=self.unroll,
has_aux=True,
verbose=int(self.verbose)-1,
verbose=max(int(self.verbose)-1, 0),
tol=1e-2)
init_stepsize = jnp.where(state.stepsize <= self.min_stepsize,
# If stepsize became too small, we restart it.
Expand Down
2 changes: 1 addition & 1 deletion jaxopt/_src/lbfgs.py
Original file line number Diff line number Diff line change
Expand Up @@ -451,7 +451,7 @@ def __post_init__(self):
max_stepsize=self.max_stepsize,
jit=self.jit,
unroll=unroll,
verbose=self.verbose,
verbose=max(int(self.verbose)-1, 0),
)
self.run_ls = self.linesearch_solver.run

Expand Down
2 changes: 1 addition & 1 deletion jaxopt/_src/lbfgsb.py
Original file line number Diff line number Diff line change
Expand Up @@ -618,7 +618,7 @@ def __post_init__(self):
max_stepsize=self.max_stepsize,
jit=self.jit,
unroll=unroll,
verbose=int(self.verbose)-1,
verbose=max(int(self.verbose)-1, 0),
)

self.run_ls = linesearch_solver.run
Expand Down
2 changes: 1 addition & 1 deletion jaxopt/_src/nonlinear_cg.py
Original file line number Diff line number Diff line change
Expand Up @@ -314,7 +314,7 @@ def __post_init__(self):
max_stepsize=self.max_stepsize,
jit=self.jit,
unroll=unroll,
verbose=int(self.verbose)-1
verbose=max(int(self.verbose)-1, 0)
)

self.run_ls = linesearch_solver.run
Expand Down
3 changes: 3 additions & 0 deletions jaxopt/_src/osqp.py
Original file line number Diff line number Diff line change
Expand Up @@ -737,6 +737,9 @@ def update(self,
dual_residuals=dual_residuals,
rho_bar=rho_bar,
solver_state=solver_state)

if self.verbose:
self.log_info(state)
return base.OptStep(params=sol, state=state)

def run(self,
Expand Down
73 changes: 49 additions & 24 deletions tests/common_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,8 @@ def fun(w, X, y):
msg = "weak_type inconsistency for attribute '%s' in solver '%s'"
self.assertEqual(weak_type0, weak_type1, msg=msg % (field, solver_name))

def test_jit_with_verbose(self):
@parameterized.product(verbose=[True, False])
def test_jit_with_or_without_verbose(self, verbose):

fun = lambda p: p @ p

Expand All @@ -388,34 +389,40 @@ def fixed_point_fun(params):

solvers = (
# Unconstrained
jaxopt.GradientDescent(fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.PolyakSGD(fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.Broyden(fun=fixed_point_fun, jit=True, verbose=True, maxiter=4),
jaxopt.AndersonAcceleration(fixed_point_fun=fixed_point_fun, jit=True, verbose=True, maxiter=4),
jaxopt.ArmijoSGD(fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.BFGS(fun, linesearch="zoom", jit=True, verbose=True, maxiter=4),
jaxopt.BFGS(fun, linesearch="backtracking", jit=True, verbose=True, maxiter=4),
jaxopt.BFGS(fun, linesearch="hager-zhang", jit=True, verbose=True, maxiter=4),
jaxopt.LBFGS(fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.ArmijoSGD(fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.NonlinearCG(fun, jit=True, verbose=True, maxiter=4),
jaxopt.GradientDescent(fun=fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.PolyakSGD(fun=fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.Broyden(fun=fixed_point_fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.AndersonAcceleration(fixed_point_fun=fixed_point_fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.ArmijoSGD(fun=fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.BFGS(fun, linesearch="zoom", jit=True, verbose=verbose, maxiter=4),
jaxopt.BFGS(fun, linesearch="backtracking", jit=True, verbose=verbose, maxiter=4),
jaxopt.BFGS(fun, linesearch="hager-zhang", jit=True, verbose=verbose, maxiter=4),
jaxopt.LBFGS(fun=fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.ArmijoSGD(fun=fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.NonlinearCG(fun, jit=True, verbose=verbose, maxiter=4),
# Unconstrained, nonlinear least-squares
jaxopt.GaussNewton(residual_fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.LevenbergMarquardt(residual_fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.GaussNewton(residual_fun=fun, jit=True, verbose=verbose, maxiter=4),
jaxopt.LevenbergMarquardt(residual_fun=fun, jit=True, verbose=verbose, maxiter=4),
# Constrained
jaxopt.ProjectedGradient(fun=fun,
projection=jaxopt.projection.projection_non_negative, jit=True, verbose=True, maxiter=4),
projection=jaxopt.projection.projection_non_negative, jit=True, verbose=verbose, maxiter=4),
# Optax wrapper
jaxopt.OptaxSolver(opt=optax.adam(1e-1), fun=fun, jit=True, verbose=True, maxiter=4),
jaxopt.OptaxSolver(opt=optax.adam(1e-1), fun=fun, jit=True, verbose=verbose, maxiter=4),
)

@partial(jax.jit, static_argnums=(1,))
def run_solver(p0, solver):
return solver.run(p0)

for solver in solvers:
with redirect_stdout(io.StringIO()):
stdout = io.StringIO()
with redirect_stdout(stdout):
run_solver(jnp.arange(2.), solver)
printed = len(stdout.getvalue()) > 0
if verbose:
self.assertTrue(printed)
else:
self.assertFalse(printed)

# Proximal gradient solvers
fun = objective.least_squares
Expand All @@ -429,13 +436,19 @@ def run_solver_prox(p0, solver):
return solver.run(p0, hyperparams_prox=1.0, data=data)

for solver in (jaxopt.ProximalGradient(fun=fun, prox=prox.prox_lasso,
jit=True, verbose=True, maxiter=4),
jit=True, verbose=verbose, maxiter=4),
jaxopt.BlockCoordinateDescent(fun=fun,
block_prox=prox.prox_lasso,
jit=True, verbose=True, maxiter=4)
jit=True, verbose=verbose, maxiter=4)
):
with redirect_stdout(io.StringIO()):
stdout = io.StringIO()
with redirect_stdout(stdout):
run_solver_prox(params0, solver)
printed = len(stdout.getvalue()) > 0
if verbose:
self.assertTrue(printed)
else:
self.assertFalse(printed)

# Mirror Descent
Y = preprocessing.LabelBinarizer().fit_transform(y)
Expand Down Expand Up @@ -465,12 +478,18 @@ def run_mirror_descent(b0):
stepsize=1e-3,
maxiter=4,
jit=True,
verbose=True)
verbose=verbose)
_, state = md.run(b0, None, lam, data)
return state

with redirect_stdout(io.StringIO()):
stdout = io.StringIO()
with redirect_stdout(stdout):
run_mirror_descent(beta_init)
printed = len(stdout.getvalue()) > 0
if verbose:
self.assertTrue(printed)
else:
self.assertFalse(printed)

# Quadratic programming - BoxOSQP
x = jnp.array([1.0, 2.0])
Expand All @@ -486,11 +505,17 @@ def run_mirror_descent(b0):

@jax.jit
def run_box_osqp(params_obj, params_ineq):
osqp = BoxOSQP(matvec_Q=matvec_Q, matvec_A=matvec_A, tol=tol, jit=True, verbose=True, maxiter=4)
osqp = BoxOSQP(matvec_Q=matvec_Q, matvec_A=matvec_A, tol=tol, jit=True, verbose=verbose, maxiter=4)
return osqp.run(None, (None, params_obj), None, (params_ineq, params_ineq))

with redirect_stdout(io.StringIO()):
stdout = io.StringIO()
with redirect_stdout(stdout):
run_box_osqp(q, b)
printed = len(stdout.getvalue()) > 0
if verbose:
self.assertTrue(printed)
else:
self.assertFalse(printed)


if __name__ == '__main__':
Expand Down
Loading