forked from CarperAI/trlx
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Migrate to peft from opendelta for parameter efficient tuning methods (…
…CarperAI#434) + Collapse reference+learner hydra heads when using LoRa (CarperAI#320)
- Loading branch information
Showing
15 changed files
with
1,013 additions
and
427 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset | ||
# with a sentiment reward function | ||
import json | ||
import os | ||
import sys | ||
from typing import List | ||
|
||
import torch | ||
from datasets import load_dataset | ||
from peft import LoraConfig | ||
from peft.utils.config import TaskType | ||
from transformers import pipeline | ||
|
||
import trlx | ||
from trlx.data.default_configs import TRLConfig, default_ppo_config | ||
|
||
|
||
def get_positive_score(scores): | ||
"Extract value associated with a positive sentiment from pipeline's output" | ||
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | ||
|
||
|
||
def main(hparams={}): | ||
# Merge sweep config with default config if given | ||
config = TRLConfig.update(default_ppo_config().to_dict(), hparams) | ||
|
||
if torch.cuda.is_available(): | ||
device = int(os.environ.get("LOCAL_RANK", 0)) | ||
else: | ||
device = -1 | ||
|
||
sentiment_fn = pipeline( | ||
"sentiment-analysis", | ||
"lvwerra/distilbert-imdb", | ||
top_k=2, | ||
truncation=True, | ||
batch_size=256, | ||
device=device, | ||
) | ||
|
||
# Just insert your peft config here (the type must be an instance of peft.PeftConfig or a dict). | ||
config.model.peft_config = LoraConfig( | ||
r=8, | ||
task_type=TaskType.CAUSAL_LM, | ||
lora_alpha=32, | ||
lora_dropout=0.1, | ||
) | ||
|
||
def reward_fn(samples: List[str], **kwargs) -> List[float]: | ||
sentiments = list(map(get_positive_score, sentiment_fn(samples))) | ||
return sentiments | ||
|
||
# Take few words off of movies reviews as prompts | ||
imdb = load_dataset("imdb", split="train+test") | ||
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]] | ||
|
||
trlx.train( | ||
reward_fn=reward_fn, | ||
prompts=prompts, | ||
eval_prompts=["I don't know much about Hungarian underground"] * 256, | ||
config=config, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | ||
main(hparams) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.