Skip to content

gh-BumsooKim/Numerical-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Numerical Analysis and Computational Analysis

Numerical Analysis and Computational Analysis with MATLAB, Python and CUDA C

Examples

<Chemical Reactions>
k = Ae^-E/(RTa)

<Fourier Series Approximation>
cos x = 1
cos x = 1 - x^2/2!
cos x = 1 - x^2/2! + x^4/4!
        .
        .
        .
Then, calculate error (approximation - true value)

Roots of Equations

% 1. Bisection Method
if func(x_l) * func(x_u) < 0
        x_u = x_r;
else
        x_l = x_r;
end
        
% 2. False-Position Method
x_r = x_u - func(x_u) * (x_l - x_u)/(func(x_l) - func(x_u));

if func(x_l) * func(x_u) < 0
        x_u = x_r;
else
        x_l = x_r;
end

% 3. Fixed Point Iteration
x_new = funcG(x_old);
x_old = x_new;


% 4. Secant Method
x_i3 = x_i2 - func(x_i2) * (x_i2 - x_i1) / (func(x_i2) - func(x_i1))

% 5. Modifed Secant Methods | e.g. delta = 10^-6
x_i3 = x_i2 - func(x_i2) * delta * x_i2 / (func(x_i2 * (1 + delta)) - func(x_i2))

[Bisection (Bracketing Methods)]

[False Position Approach (Bracketing Methods)]

[Fixed-Point Iteration (Open Methods)]

[Secant Method / Modified Secant Method (Open Methods)]

Gauss Elimination

Linear Equation File Usage

Ax = b

1*x1  + 0*x2 + 2*x3 + 3*x4 =  1
-1*x1 + 2*x2 + 2*x3 - 3*x4 = -1
0*x1  + 1*x2 + 1*x3 + 4*x4 =  2
6*x1  + 2*x2 + 2*x3 + 4*x4 =  1


-> file_format(.txt) ->


1  0 2  3
-1 2 2 -3
0  1 1  4
6  2 2  4
1 -1 2  1

About

Numerical Analysis with MATLAB, Python and CUDA C

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published