Skip to content

furiosa-ai/inference

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FuriosaAI Internal Evaluation(MLPerf v4.1 candidate)

Prerequisites

Installation

git clone --branch v4.1-internal https://github.com/furiosa-ai/inference.git
cd inference

# (optional, for mlperf loadgen) if GCC Compiler is not installed on Ubuntu,
apt-get update && apt-get install build-essential -y

# (optional, for Stable Diffusion only) it requires cv2 related devian packages to run Stable Diffusion
DEBIAN_FRONTEND=noninteractive apt-get update && apt-get install libgl1 libglib2.0-0 -y

Submission Model

Wi8Ai8KVi8 Quantized BERT (qBERT)

  • Evaluation Result(v3.13.2)

    Our Result Accuracy Target (99%)
    F1 91.0563 (100.20%*) 89.9653

    *The percentage is calculated as follows: (Our Result [Accuracy] / Reference Accuracy) * 100. This formula applies to all the cases listed below.

To reproduce the results, run the following commands:

. scripts/build_qbert_env.sh  # Skip this step if the environment is already set up.
make qbert

For evaluations with different settings, modify the following environment variables:

  • SCENARIO: The MLPerf benchmark scenario. Possible values are Offline, SingleStream, MultiStream, or Server. (default: Offline)
  • N_COUNT: The number of data samples to evaluate. (range: [1, 10833])
  • CALIBRATE: Specifies whether to perform calibration during evaluation. (default: false)
  • N_CALIB: The number of data samples to use for calibrating the quantized model. (range: [1, 100])

Wi8Ai8KVi8 Quantized GPT-J (qGPT-J)

  • Evaluation Result(v3.13.2)

    Our Result Accuracy Target (99.9%)
    ROUGE1 43.0305 (100.10%) 42.9435
    ROUGE2 20.1437 (100.10%) 20.1034
    ROUGEL 30.0211 (100.11%) 29.9581
    GEN_LEN 3,978,315 (99.04%) 3,615,191*

    *GEN_LEN is required to be at least 90% of the Reference.

To reproduce the results, run the following commands:

. scripts/build_qgpt-j_env.sh # Skip this step if the environment is already set up.
make qgpt-j

For evaluations with different settings, modify the following environment variables:

  • SCENARIO: The MLPerf benchmark scenario. Possible values are Offline, SingleStream, or Server. (default: Offline)
  • N_COUNT: The number of data samples to evaluate. (range: [1, 13368])
  • CALIBRATE: Specifies whether to perform calibration during evaluation. (default: false)
  • N_CALIB: The number of data samples to use for calibrating the quantized model. (range: [1, 1000])

Wi8Ai8KVi8 Quantized LLaMA2 (qLLaMA2)

  • Evaluation Result(v3.13)

    Our Result Accuracy Target (99.9%)
    ROUGE1 TBA 44.3868
    ROUGE2 TBA 22.0132
    ROUGEL TBA 28.5876
    TOKENS_PER_SAMPLE TBA 265.005

To reproduce the results, run the following commands:

. scripts/build_qllama2-70b_env.sh # Skip this step if the environment is already set up.
make qllama2

For evaluations with different settings, modify the following environment variables:

  • SCENARIO: The MLPerf benchmark scenario. Possible values are Offline, Server. (default: Offline)
  • N_COUNT: The number of data samples to evaluate. (range: [1, 24576])
  • CALIBRATE: Specifies whether to perform calibration during evaluation. (default: false)
  • N_CALIB: The number of data samples to use for calibrating the quantized model. (range: [1, 1000])

How to run end-to-end evaluation

End-to-end(E2E) evaluation is the process of downloading models and dataset, building a Python environment, and performing model accuracy evaluation. E2E scripts are developed based on f9a643c.

To run E2E evaluation:

make [model_name]

or equivalently,

bash scripts/build_[model_name]_env.sh
bash scripts/eval_[model_name].sh
  • model_name includes [resnet, retinanet, 3d-unet, bert, gpt-j, rnnt, llama2, stablediffusion, all]

  • For example, to run E2E ResNet evaluation

    make resnet
    

    or

    # build conda environment and download dataset
    bash scripts/build_resnet_env.sh
    
    # run evaluation on pre-built conda environment
    bash scripts/eval_resnet.sh
    

Configurability

Some parameters are configurable, for example,

  • llama2-70b

    The command make llama2 is equivalent to

    export SCENARIO=Offline # SCENARIO is one of [Offline, Server]
    export N_COUNT=24576   # N_COUNT is a number between [1, 24576]
    export DATA_TYPE=float32    # DATA_TYPE is one of [float32, float16, bfloat16]
    export DEVICE=cuda:0    # DEVICE is one of [cpu, cuda:0]
    make llama2
    

    Each environment variable above has the value as default, which can be changed to another.

Likewise,

  • stable-diffusion-xl-base

    export SCENARIO=Offline # SCENARIO is one of [Offline, SingleStream, MultiStream, Server]
    export N_COUNT=5000   # N_COUNT is a number between [1, 5000]
    export DATA_TYPE=fp32    # DATA_TYPE is one of [fp32, fp16, bf16]
    export DEVICE=cuda    # DEVICE is one of [cpu, cuda]
    make stablediffusion
    

Evaluation results

Summary

In this section, we present our evaluation result(our result) and mlperf reference accuracy(reference accuracy) in a comparative manner. It is expected that this will allow us to clearly see the goals we need to achieve and our current status.

Note that all models are in Pytorch framework with float32 data type, and all experiments were conducted in Offline scenario.

language

  • llama2-70b

    benchmark our result reference accuracy
    ROUGE1 44.4312 (100.00%*) 44.4312
    ROUGE2 22.0352 (100.00%) 22.0352
    ROUGEL 28.6162 (100.00%) 28.6162
    TOKENS_PER_SAMPLE 294.4** (99.85%) 294.45

    * round(our result / reference accuracy, 2)

    ** 294.4, our result, is rounded at the second decimal place, whereas 294.4462890625 is actual. It is estimated that the reference accuracy is rounded to the 3rd decimal place.

  • gpt-j

    rngd_gelu (RNGD optimized GELU)

    our result reference accuracy
    ROUGE1 42.9865 (100.00%) 42.9865
    ROUGE2 20.1036 (99.90%) 20.1235
    ROUGEL 29.9737 (99.95%) 29.9881
    GEN_LEN 4017766 (100.02%) 4016878

    gelu_new (MLPerf reference GELU)

    our result reference accuracy
    ROUGE1 42.9865 (100.00%) 42.9865
    ROUGE2 20.1235 (100.00%) 20.1235
    ROUGEL 29.9881 (100.00%) 29.9881
    GEN_LEN 4016878 (100.00%) 4016878
  • bert

    our result reference accuracy
    F1 90.87487229720105 (100.00%) 90.874

vision

  • resnet

    our result reference accuracy accuracy(pytorch backend)
    acc(%) 76.144 (99.59% / 100.17%)* 76.46 76.014

    * There are differences between the types of model framework. That is, our model used for our result is Pytorch backended, and the one used for reference accuracy is Tensorflow. The reference accuracy of Pytorch backended model can be checked in the accuracy(pytorch backend) item.

  • retinanet

    our result reference accuracy
    mAP(%) 37.552 (100.01%) 37.55
  • 3d-unet

    our result reference accuracy
    DICE 0.86173 (100.00%) 0.86170

speech recognition

  • rnnt

    our result reference accuracy
    WER(%) 7.459018241673995 7.452
    100-WER(%) 92.5409817583 (99.99%*) 92.548

    * Reason unknown.

recommendation

  • dlrm-v2

    our result reference accuracy
    AUC TBA* 80.31

    * 8 GPUs are needed for evaluation.

text to image

  • stable-diffusion-xl-base

    our result reference accuracy
    CLIP_SCORE 31.74663716465235 (100.19%) 31.68631873
    FID_SCORE 23.431448173651063 (101.83%) 23.01085758

    * The gap between our result and reference accuracy is quite large. There is a possibility that the published weight and the one used in the experiment are different. It is neccesary to update evaluation result later.

v3.1

  • Default settings:
    • scenario: Offline
    • model framework: pytorch
    • data type: f32
  • Device info:
    • GPU: 1 NVIDIA A100-SXM4-80GB
    • CPU: Intel(R) Xeon(R) Platinum 8358 CPU
model name our result mlperf result input shape* dataset
resnet 76.144%(top1 Acc.) 76.014%(top1 Acc.) 1x3x224x224(NxCxHxW) Imagenet2012 validation (num_data: 50,000)
retinanet 0.3755(mAP) 0.3755(mAP) 1x3x800x800(NxCxHxW) MLPerf Openimages (num_data: 24,781)
3d-unet 0.86173(Dice) 0.86170(Dice) 1x1x128x128x128(NxCxDxHxW) eval set of KiTS 2019 (num_data: 2,761)
bert 90.874%(F1) 90.874%(F1) 1x384(NxS) SQuAD v1.1 validation set (num_data: 10,833)
gpt-j 42.9865(Rouge1) 42.9865(Rouge1) 1x1919(NxS) CNN-Daily Mail (num_data: 13,368)
rnnt 7.45901%(WER) 74.45225%(WER) 500x1x240(SxNxF) OpenSLR LibriSpeech Corpus (num_data: 2,513)
dlrm-v2 TBA 80.31%(AUC) TBA Criteo Terabyte (day 23) (num_data: TBA)

* Shape of preprocessed(transformed/tokenized) input. Notations:

  • N: Batch size
  • C: input Channel dimension
  • H: Height dimension
  • W: Width dimension
  • D: Depth dimension
  • S: max Sequence length
  • F: input Feature dimension

To get verified evaluation log:

# (optional) if not installed,
pip install dvc[s3]

make log_[model_name]
  • model_name includes [resnet, retinanet, 3d-unet, bert, gpt-j, rnnt, all]
  • For example, with
    make log_resnet
    
    the evaluation log of ResNet will be pulled to logs/internal/resnet.

v4.0

  • Default settings:

    • scenario: Offline
    • model framework: pytorch
  • LLaMA2-70b

    data type our result mlperf result elapsed time device
    float32 44.4312(Rouge1) 44.4312(Rouge1) 6.6 days 6 H100 PCIe
    float16 44.4362(Rouge1) - 3.5 days 3 A100-SXM4-80GB
    bfloat16 44.4625(Rouge1) - 3.6 days 3 A100-SXM4-80GB
  • Stable Diffusion XL base

    data type our result mlperf result elapsed time device
    float32 31.7466(clip_score) 31.6863(clip_score) 24 hours 1 GeForce RTX 3090
    float16 31.7558(clip_score) - 7.5 hours 1 GeForce RTX 3090
    bfloat16 31.7380(clip_score) - 8.3 hours 1 GeForce RTX 3090

To get verified evaluation log:

# (optional) if not installed,
pip install dvc[s3]

make log_[model_name]
  • model_name includes [llama2, stablediffusion, all]
  • For example, with
    make log_llama2
    
    the evaluation logs of LLaMA2-70b will be pulled to logs/internal/llama2-70b.

MLPerf™ Inference Benchmark Suite

MLPerf Inference is a benchmark suite for measuring how fast systems can run models in a variety of deployment scenarios.

Please see the MLPerf Inference benchmark paper for a detailed description of the benchmarks along with the motivation and guiding principles behind the benchmark suite. If you use any part of this benchmark (e.g., reference implementations, submissions, etc.), please cite the following:

@misc{reddi2019mlperf,
    title={MLPerf Inference Benchmark},
    author={Vijay Janapa Reddi and Christine Cheng and David Kanter and Peter Mattson and Guenther Schmuelling and Carole-Jean Wu and Brian Anderson and Maximilien Breughe and Mark Charlebois and William Chou and Ramesh Chukka and Cody Coleman and Sam Davis and Pan Deng and Greg Diamos and Jared Duke and Dave Fick and J. Scott Gardner and Itay Hubara and Sachin Idgunji and Thomas B. Jablin and Jeff Jiao and Tom St. John and Pankaj Kanwar and David Lee and Jeffery Liao and Anton Lokhmotov and Francisco Massa and Peng Meng and Paulius Micikevicius and Colin Osborne and Gennady Pekhimenko and Arun Tejusve Raghunath Rajan and Dilip Sequeira and Ashish Sirasao and Fei Sun and Hanlin Tang and Michael Thomson and Frank Wei and Ephrem Wu and Lingjie Xu and Koichi Yamada and Bing Yu and George Yuan and Aaron Zhong and Peizhao Zhang and Yuchen Zhou},
    year={2019},
    eprint={1911.02549},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Please see here for the MLPerf inference documentation website which includes automated commands to run MLPerf inference benchmarks using different implementations.

MLPerf Inference v4.1 (submission deadline July 26, 2024)

For submissions, please use the master branch and any commit since the 4.1 seed release although it is best to use the latest commit. v4.1 tag will be created from the master branch after the result publication.

For power submissions please use SPEC PTD 1.10 (needs special access) and any commit of the power-dev repository after the code-freeze

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx, tvm, ncnn imagenet2012 edge,datacenter
retinanet 800x800 vision/classification_and_detection pytorch, onnx openimages resized to 800x800 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm-v2 recommendation/dlrm_v2 pytorch Multihot Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet-kits19 pytorch, tensorflow, onnx KiTS19 edge,datacenter
gpt-j language/gpt-j pytorch CNN-Daily Mail edge,datacenter
stable-diffusion-xl text_to_image pytorch COCO 2014 edge,datacenter
llama2-70b language/llama2-70b pytorch OpenOrca datacenter
mixtral-8x7b language/mixtral-8x7b pytorch OpenOrca, MBXP, GSM8K datacenter
  • Framework here is given for the reference implementation. Submitters are free to use their own frameworks to run the benchmark.

MLPerf Inference v4.0 (submission February 23, 2024)

There is an extra one-week extension allowed only for the llama2-70b submissions. For submissions, please use the master branch and any commit since the 4.0 seed release although it is best to use the latest commit. v4.0 tag will be created from the master branch after the result publication.

For power submissions please use SPEC PTD 1.10 (needs special access) and any commit of the power-dev repository after the code-freeze

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx, tvm, ncnn imagenet2012 edge,datacenter
retinanet 800x800 vision/classification_and_detection pytorch, onnx openimages resized to 800x800 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm-v2 recommendation/dlrm_v2 pytorch Multihot Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet-kits19 pytorch, tensorflow, onnx KiTS19 edge,datacenter
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus edge,datacenter
gpt-j language/gpt-j pytorch CNN-Daily Mail edge,datacenter
stable-diffusion-xl text_to_image pytorch COCO 2014 edge,datacenter
llama2-70b language/llama2-70b pytorch OpenOrca datacenter
  • Framework here is given for the reference implementation. Submitters are free to use their own frameworks to run the benchmark.

MLPerf Inference v3.1 (submission August 18, 2023)

Please use v3.1 tag (git checkout v3.1) if you would like to reproduce the v3.1 results.

For reproducing power submissions please use the master branch of the MLCommons power-dev repository and checkout to e9e16b1299ef61a2a5d8b9abf5d759309293c440.

You can see the individual README files in the benchmark task folders for more details regarding the benchmarks. For reproducing the submitted results please see the README files under the respective submitter folders in the inference v3.1 results repository.

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx, tvm, ncnn imagenet2012 edge,datacenter
retinanet 800x800 vision/classification_and_detection pytorch, onnx openimages resized to 800x800 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm-v2 recommendation/dlrm_v2 pytorch Multihot Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet-kits19 pytorch, tensorflow, onnx KiTS19 edge,datacenter
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus edge,datacenter
gpt-j language/gpt-j pytorch CNN-Daily Mail edge,datacenter

MLPerf Inference v3.0 (submission 03/03/2023)

Please use the v3.0 tag (git checkout v3.0) if you would like to reproduce v3.0 results.

You can see the individual Readme files in the reference app for more details.

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx, tvm imagenet2012 edge,datacenter
retinanet 800x800 vision/classification_and_detection pytorch, onnx openimages resized to 800x800 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm recommendation/dlrm pytorch, tensorflow Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet-kits19 pytorch, tensorflow, onnx KiTS19 edge,datacenter
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus edge,datacenter

MLPerf Inference v2.1 (submission 08/05/2022)

Use the r2.1 branch (git checkout r2.1) if you want to submit or reproduce v2.1 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx imagenet2012 edge,datacenter
retinanet 800x800 vision/classification_and_detection pytorch, onnx openimages resized to 800x800 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm recommendation/dlrm pytorch, tensorflow Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet-kits19 pytorch, tensorflow, onnx KiTS19 edge,datacenter
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus edge,datacenter

MLPerf Inference v2.0 (submission 02/25/2022)

Use the r2.0 branch (git checkout r2.0) if you want to submit or reproduce v2.0 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx imagenet2012 edge,datacenter
ssd-mobilenet 300x300 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300 edge
ssd-resnet34 1200x1200 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm recommendation/dlrm pytorch, tensorflow Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet-kits19 pytorch, tensorflow, onnx KiTS19 edge,datacenter
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus edge,datacenter

MLPerf Inference v1.1 (submission 08/13/2021)

Use the r1.1 branch (git checkout r1.1) if you want to submit or reproduce v1.1 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx imagenet2012 edge,datacenter
ssd-mobilenet 300x300 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300 edge
ssd-resnet34 1200x1200 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm recommendation/dlrm pytorch, tensorflow Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet pytorch, tensorflow(?), onnx(?) BraTS 2019 edge,datacenter
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus edge,datacenter

MLPerf Inference v1.0 (submission 03/19/2021)

Use the r1.0 branch (git checkout r1.0) if you want to submit or reproduce v1.0 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset category
resnet50-v1.5 vision/classification_and_detection tensorflow, onnx imagenet2012 edge,datacenter
ssd-mobilenet 300x300 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300 edge
ssd-resnet34 1200x1200 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200 edge,datacenter
bert language/bert tensorflow, pytorch, onnx squad-1.1 edge,datacenter
dlrm recommendation/dlrm pytorch, tensorflow(?) Criteo Terabyte datacenter
3d-unet vision/medical_imaging/3d-unet pytorch, tensorflow(?), onnx(?) BraTS 2019 edge,datacenter
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus edge,datacenter

MLPerf Inference v0.7 (submission 9/18/2020)

Use the r0.7 branch (git checkout r0.7) if you want to submit or reproduce v0.7 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset
resnet50-v1.5 vision/classification_and_detection tensorflow, pytorch, onnx imagenet2012
ssd-mobilenet 300x300 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300
ssd-resnet34 1200x1200 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200
bert language/bert tensorflow, pytorch, onnx squad-1.1
dlrm recommendation/dlrm pytorch, tensorflow(?), onnx(?) Criteo Terabyte
3d-unet vision/medical_imaging/3d-unet pytorch, tensorflow(?), onnx(?) BraTS 2019
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus

MLPerf Inference v0.5

Use the r0.5 branch (git checkout r0.5) if you want to reproduce v0.5 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset
resnet50-v1.5 v0.5/classification_and_detection tensorflow, pytorch, onnx imagenet2012
mobilenet-v1 v0.5/classification_and_detection tensorflow, pytorch, onnx imagenet2012
ssd-mobilenet 300x300 v0.5/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300
ssd-resnet34 1200x1200 v0.5/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200
gnmt v0.5/translation/gnmt/ tensorflow, pytorch See Readme

About

Reference implementations of MLPerf™ inference benchmarks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 69.1%
  • Shell 11.7%
  • C++ 10.4%
  • Jupyter Notebook 6.4%
  • CSS 0.8%
  • Makefile 0.8%
  • Other 0.8%