-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add code for MAPLE and for inner-annotator agreement (#46)
Co-authored-by: Shayekh Bin Islam <[email protected]>
- Loading branch information
1 parent
621fc66
commit a8222bb
Showing
2 changed files
with
193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import seaborn as sns | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
data = { | ||
"meta-llama/Meta-Llama-3.1-8B-Instruct": [ | ||
0.3533086666014079, | ||
0.052422082615756406 | ||
], | ||
"cohere/c4ai-aya-23-35b": [ | ||
0.43767196047824003, | ||
0.026040919354464294 | ||
], | ||
"cohere/c4ai-aya-23-8b": [ | ||
0.013483014909052663, | ||
0.03363706833599835 | ||
], | ||
"cohere/command-r-08-2024": [ | ||
0.374457668650282, | ||
0.02926089754079793 | ||
], | ||
"cohere/command-r-plus-08-2024": [ | ||
0.3830841816733316, | ||
0.020185255968455686 | ||
], | ||
"google/gemma-1.1-7b-it": [ | ||
0.5190375637539242, | ||
0.027757722654111305 | ||
], | ||
"google/gemma-2-9b-it": [ | ||
0.5181663123111222, | ||
0.031090119385244894 | ||
], | ||
"meta-llama/Meta-Llama-3-70B-Instruct": [ | ||
0.5685224105896568, | ||
0.04853344616275034 | ||
], | ||
"meta-llama/Meta-Llama-3-8B-Instruct": [ | ||
0.37936948540837095, | ||
0.032172769265151994 | ||
], | ||
"meta-llama/Meta-Llama-3.1-70B-Instruct": [ | ||
0.603536768244583, | ||
0.027191895488989915 | ||
], | ||
"mistralai/Mistral-7B-Instruct-v0.2": [ | ||
0.4071166722276529, | ||
0.04577594028555328 | ||
], | ||
"mistralai/Mistral-7B-Instruct-v0.3": [ | ||
0.41195018984687265, | ||
0.056184679972755454 | ||
], | ||
"openai/gpt-4-turbo-2024-04-09": [ | ||
0.6106943361444249, | ||
0.02932446842558468 | ||
], | ||
"openai/gpt-4o-2024-05-13": [ | ||
0.5833874065757011, | ||
0.023695391445384514 | ||
] | ||
} | ||
|
||
sorted_data = dict(sorted(data.items(), key=lambda item: item[1][0])) | ||
labels_sorted = list(sorted_data.keys()) | ||
means_sorted = [v[0] for v in sorted_data.values()] | ||
std_devs_sorted = [v[1] for v in sorted_data.values()] | ||
|
||
sns.set(style="whitegrid") | ||
palette = sns.color_palette("coolwarm", len(labels_sorted)) | ||
|
||
plt.figure(figsize=(10, 6)) | ||
x_pos_sorted = np.arange(len(labels_sorted)) | ||
|
||
ax1 = sns.barplot(x=x_pos_sorted, y=means_sorted, palette=palette, errorbar=None) | ||
plt.errorbar(x_pos_sorted, means_sorted, yerr=std_devs_sorted, fmt='none', c='black', capsize=5) | ||
|
||
ax1.spines['top'].set_color('black') | ||
ax1.spines['right'].set_color('black') | ||
ax1.spines['left'].set_color('black') | ||
ax1.spines['bottom'].set_color('black') | ||
for spine in ax1.spines.values(): | ||
spine.set_linewidth(2) # Make the border thicker | ||
|
||
plt.ylim(0, 0.8) | ||
|
||
plt.xticks(x_pos_sorted, labels_sorted, rotation=90) | ||
plt.ylabel("Cohen's Kappa") | ||
plt.title('Average Inner-Model Agreement Across Languages') | ||
|
||
plt.tight_layout() | ||
plt.savefig(f"./innermodel_agreement.pdf", bbox_inches='tight') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
import json | ||
from pathlib import Path | ||
|
||
import argparse | ||
import logging | ||
from pathlib import Path | ||
from typing import Optional | ||
|
||
import pandas as pd | ||
import seaborn as sns | ||
import matplotlib.pyplot as plt | ||
from huggingface_hub import snapshot_download | ||
import datasets | ||
import json | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from itertools import combinations | ||
from collections import defaultdict | ||
|
||
|
||
FONT_SIZES = {"small": 12, "medium": 16, "large": 18} | ||
|
||
PLOT_PARAMS = { | ||
"font.family": "serif", | ||
"font.serif": ["Times New Roman", "STIX"], | ||
"font.size": FONT_SIZES.get("medium"), | ||
"axes.titlesize": FONT_SIZES.get("large"), | ||
"axes.labelsize": FONT_SIZES.get("large"), | ||
"xtick.labelsize": FONT_SIZES.get("large"), | ||
"ytick.labelsize": FONT_SIZES.get("small"), | ||
"legend.fontsize": FONT_SIZES.get("medium"), | ||
"figure.titlesize": FONT_SIZES.get("medium"), | ||
"text.usetex": False, | ||
} | ||
|
||
logging.basicConfig(level=logging.INFO) | ||
|
||
plt.rcParams.update(PLOT_PARAMS) | ||
|
||
def load_json(json_file_path): | ||
with open(json_file_path, "r") as file: | ||
json_data = json.load(file) | ||
return json_data | ||
|
||
results_dir = 'data/eval-results-maple' | ||
results_path = Path(results_dir) | ||
|
||
results_all = [] | ||
for result_file in results_path.glob("*.json"): | ||
raw_results = load_json(result_file) | ||
if "leaderboard" in raw_results.keys(): | ||
model_id = raw_results["model"] | ||
subset_results = raw_results['subset'] | ||
overall = raw_results['scores']['accuracy'] | ||
remove_key = ['model', 'model_type', 'chat_template'] | ||
for key in remove_key: | ||
del subset_results[key] | ||
elif "subset_results" in raw_results.keys(): | ||
model_id = raw_results["model"] | ||
subset_results = raw_results['subset_results'] | ||
overall = raw_results['accuracy'] | ||
else: | ||
model_id = raw_results["model"] | ||
subset_results = raw_results['extra_results'] | ||
overall = raw_results['accuracy'] | ||
# print(model_id, overall) | ||
# print("\t", subset_results) | ||
# results_all.append([model_id, overall, subset_results]) | ||
results_all.append({'Model': model_id, 'Avg': overall, **subset_results}) | ||
|
||
# import ipdb; ipdb.set_trace() | ||
|
||
TOP = 10 | ||
# results_all.sort(key=lambda x: x[1], reverse=True) | ||
# results_all = results_all[:TOP] | ||
# print(results_all) | ||
|
||
df_results = pd.DataFrame(results_all) | ||
df_results = df_results.sort_values(by='Avg', ascending=False).reset_index(drop=True) | ||
df_results = df_results.head(10).reset_index(drop=True) | ||
|
||
df_results.columns = df_results.columns.str.replace('^maple-', '', regex=True) | ||
df_results = df_results.set_index("Model") | ||
df_results = df_results * 100 | ||
fig, ax = plt.subplots(1, 1, figsize=(18, 5)) | ||
|
||
sns.heatmap(df_results, ax=ax, cmap="YlGn", annot=True, annot_kws={"size": 16}, | ||
fmt=".1f", cbar=False) | ||
|
||
ax.xaxis.set_ticks_position("top") | ||
ax.tick_params(axis="x", labelrotation=45) | ||
ax.set_ylabel("") | ||
ax.set_yticklabels([f"{model} " for model in df_results.index]) | ||
|
||
plt.tight_layout() | ||
|
||
plt.savefig("plots/maple.pdf", bbox_inches="tight") | ||
# import ipdb; ipdb.set_trace() | ||
|
||
|