-
Notifications
You must be signed in to change notification settings - Fork 206
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
Ref -> #119
- Loading branch information
1 parent
ba864a8
commit afe4d60
Showing
3 changed files
with
177 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
|
||
from finquant.momentum_indicators import ( | ||
relative_strength_index as rsi, | ||
macd, | ||
) | ||
|
||
plt.switch_backend("Agg") | ||
|
||
def test_rsi(): | ||
x = np.sin(np.linspace(1, 10, 100)) | ||
xlabel_orig = "Date" | ||
ylabel_orig = "Price" | ||
df = pd.DataFrame({"Stock": x}, index=np.linspace(1, 10, 100)) | ||
df.index.name = "Date" | ||
rsi(df) | ||
# get data from axis object | ||
ax = plt.gca() | ||
# ax.lines[0] is the data we passed to plot_bollinger_band | ||
line1 = ax.lines[0] | ||
stock_plot = line1.get_xydata() | ||
xlabel_plot = ax.get_xlabel() | ||
ylabel_plot = ax.get_ylabel() | ||
# tests | ||
assert (df['Stock'].index.values == stock_plot[:, 0]).all() | ||
assert (df["Stock"].values == stock_plot[:, 1]).all() | ||
assert xlabel_orig == xlabel_plot | ||
assert ylabel_orig == ylabel_plot | ||
|
||
def test_rsi_standalone(): | ||
x = np.sin(np.linspace(1, 10, 100)) | ||
xlabel_orig = "Date" | ||
ylabel_orig = "RSI" | ||
labels_orig = ['rsi'] | ||
title_orig = 'RSI Plot' | ||
df = pd.DataFrame({"Stock": x}, index=np.linspace(1, 10, 100)) | ||
df.index.name = "Date" | ||
rsi(df, standalone=True) | ||
# get data from axis object | ||
ax = plt.gca() | ||
# ax.lines[2] is the RSI data | ||
line1 = ax.lines[2] | ||
rsi_plot = line1.get_xydata() | ||
xlabel_plot = ax.get_xlabel() | ||
ylabel_plot = ax.get_ylabel() | ||
print (xlabel_plot, ylabel_plot) | ||
# tests | ||
assert (df['rsi'].index.values == rsi_plot[:, 0]).all() | ||
# for comparing values, we need to remove nan | ||
a, b = df['rsi'].values, rsi_plot[:, 1] | ||
a, b = map(lambda x: x[~np.isnan(x)], (a, b)) | ||
assert (a == b).all() | ||
labels_plot = ax.get_legend_handles_labels()[1] | ||
title_plot = ax.get_title() | ||
assert labels_plot == labels_orig | ||
assert xlabel_plot == xlabel_orig | ||
assert ylabel_plot == ylabel_orig | ||
assert title_plot == title_orig | ||
|
||
def test_macd(): | ||
x = np.sin(np.linspace(1, 10, 100)) | ||
xlabel_orig = "Date" | ||
ylabel_orig = "Price" | ||
df = pd.DataFrame({"Stock": x}, index=np.linspace(1, 10, 100)) | ||
df.index.name = "Date" | ||
macd(df) | ||
# get data from axis object | ||
ax = plt.gca() | ||
# ax.lines[0] is the data we passed to plot_bollinger_band | ||
line1 = ax.lines[0] | ||
stock_plot = line1.get_xydata() | ||
xlabel_plot = ax.get_xlabel() | ||
ylabel_plot = ax.get_ylabel() | ||
# tests | ||
assert (df['Stock'].index.values == stock_plot[:, 0]).all() | ||
assert (df["Stock"].values == stock_plot[:, 1]).all() | ||
assert xlabel_orig == xlabel_plot | ||
assert ylabel_orig == ylabel_plot | ||
|
||
def test_macd_standalone(): | ||
labels_orig = ['MACD', 'diff', 'SIGNAL'] | ||
x = np.sin(np.linspace(1, 10, 100)) | ||
xlabel_orig = "Date" | ||
ylabel_orig = "MACD" | ||
df = pd.DataFrame({"Stock": x}, index=np.linspace(1, 10, 100)) | ||
df.index.name = "Date" | ||
macd(df, standalone=True) | ||
# get data from axis object | ||
ax = plt.gca() | ||
labels_plot = ax.get_legend_handles_labels()[1] | ||
xlabel_plot = ax.get_xlabel() | ||
ylabel_plot = ax.get_ylabel() | ||
assert labels_plot == labels_orig | ||
assert xlabel_plot == xlabel_orig | ||
assert ylabel_plot == ylabel_orig | ||
# ax.lines[0] is macd data | ||
# ax.lines[1] is diff data | ||
# ax.lines[2] is macd_s data | ||
# tests | ||
for i, key in ((0, 'macd'), (1, 'diff'), (2, 'macd_s')): | ||
line = ax.lines[i] | ||
data_plot = line.get_xydata() | ||
# tests | ||
assert (df[key].index.values == data_plot[:, 0]).all() | ||
# for comparing values, we need to remove nan | ||
a, b = df[key].values, data_plot[:, 1] | ||
a, b = map(lambda x: x[~np.isnan(x)], (a, b)) | ||
assert (a == b).all() |