Skip to content

Build on Schedule

Build on Schedule #44

name: Build on Schedule
on:
schedule:
# run at 00:00 of every Sunday
- cron: "0 0 * * *"
workflow_dispatch:
jobs:
build:
name: Build and Test Colossal-AI
if: github.repository == 'hpcaitech/ColossalAI'
runs-on: [self-hosted, 8-gpu]
container:
image: hpcaitech/pytorch-cuda:1.12.0-11.3.0
options: --gpus all --rm -v /data/scratch/cifar-10:/data/scratch/cifar-10
timeout-minutes: 40
steps:
- name: Check GPU Availability # ensure all GPUs have enough memory
id: check-avai
run: |
avai=true
for i in $(seq 0 7);
do
gpu_used=$(nvidia-smi -i $i --query-gpu=memory.used --format=csv,noheader,nounits)
[ "$gpu_used" -gt "10000" ] && avai=false
done
echo "GPU is available: $avai"
echo "avai=$avai" >> $GITHUB_OUTPUT
- uses: actions/checkout@v2
if: steps.check-avai.outputs.avai == 'true'
with:
repository: hpcaitech/TensorNVMe
ssh-key: ${{ secrets.SSH_KEY_FOR_CI }}
path: TensorNVMe
- name: Install tensornvme
if: steps.check-avai.outputs.avai == 'true'
run: |
cd TensorNVMe
conda install cmake
pip install -r requirements.txt
pip install -v .
- uses: actions/checkout@v2
if: steps.check-avai.outputs.avai == 'true'
with:
ssh-key: ${{ secrets.SSH_KEY_FOR_CI }}
- name: Install Colossal-AI
if: steps.check-avai.outputs.avai == 'true'
run: |
[ ! -z "$(ls -A /github/home/cuda_ext_cache/)" ] && cp -r /github/home/cuda_ext_cache/* /__w/ColossalAI/ColossalAI/
CUDA_EXT=1 pip install -v -e .
cp -r /__w/ColossalAI/ColossalAI/build /github/home/cuda_ext_cache/
pip install -r requirements/requirements-test.txt
- name: Unit Testing
if: steps.check-avai.outputs.avai == 'true'
run: |
PYTHONPATH=$PWD pytest --durations=0 tests
env:
DATA: /data/scratch/cifar-10
LD_LIBRARY_PATH: /github/home/.tensornvme/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
- name: Notify Lark
id: message-preparation
if: ${{ failure() }}
run: |
url=$SERVER_URL/$REPO/actions/runs/$RUN_ID
msg="Scheduled Build and Test failed on 8 GPUs, please visit $url for details"
echo $msg
python .github/workflows/scripts/send_message_to_lark.py -m "$msg" -u $WEBHOOK_URL
env:
SERVER_URL: ${{github.server_url }}
REPO: ${{ github.repository }}
RUN_ID: ${{ github.run_id }}
WEBHOOK_URL: ${{ secrets.LARK_NOTIFICATION_WEBHOOK_URL }}