Skip to content

eyalmazuz/MolGen

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

80 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MolGen

Overview

this code is used for Molecule Generation Using Transformers and Policy Gradient Reinfocement Learning

System Requirements

the code ran on a 8-core CPU with 64GB or ram and TITAN RTX GPU. using Linux: Ubuntu 18.04+

Installtion Guide

Install the conda enviroment using the following command: conda env create -f environment.yml

Running Demo

Please follow the prerequisite before running the code:

  1. Create a data folder in root dir of the project,
  2. Create a gdb/gdb13 folder and download the GDB13 rand 1m smi file to it from the following link: https://gdb.unibe.ch/downloads/
  3. Create a tokenizers folder in the data folder.
  4. Create a results folder in the data folder.

All the code contains the hyper-parameters used in all of the expremiments

To train a language model and then perform reinforcement learning optimization run: python3 MolGen/main.py --do_train --do_eval --dataset_path ./data/gdb/gdb13/gdb13.smi --tokenizer Char --tokenizer_path ./data/tokenizers/gdb13CharTokenizer.json --reward_fns QED --multipliers "lambda x: x" --batch_size 256

To only perform reinfocement learning optimization with a pretrained language model run: python3 MolGen/main.py --load_pretrained --pretrained_path ./data/models/gpt_pre_rl_gdb13.pt --do_eval --dataset_path ./data/gdb/gdb13/gdb13.smi --tokenizer Char --tokenizer_path ./data/tokenizers/gdb13CharTokenizer.json --reward_fns QED --multipliers "lambda x: x" --batch_size 256

Cite

Mazuz, E., Shtar, G., Shapira, B. et al. Molecule generation using transformers and policy gradient reinforcement learning. Sci Rep 13, 8799 (2023). https://doi.org/10.1038/s41598-023-35648-w

@article{mazuz2023molecule,
  title={Molecule generation using transformers and policy gradient reinforcement learning},
  author={Mazuz, Eyal and Shtar, Guy and Shapira, Bracha and Rokach, Lior},
  journal={Scientific Reports},
  volume={13},
  number={1},
  pages={8799},
  year={2023},
  publisher={Nature Publishing Group UK London}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages