Skip to content

eyalmazuz/DrugRepurposing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DrugRepurposing

This repo is for the paper "Eravacycline, an Antibacterial Drug, Repurposed for Pancreatic Cancer Therapy: Insights from a Molecular-Based Deep Learning Model" which contains the code to train a drug reporpusing model for cancer treatments

Data

The data is located under the data folder:

  1. labels_training_set_w_drugbank_id.csv- contains the data collated manually of drugs that are classified as anti-cancer and those that have indication to not have anti-cancer activity
  2. all_data_infer_labels_preds_w_drug_bank_info_no_features.csv- all drugs in DrugBank excluding those that were used to train the model

Code

The anti-cancer model was train using the chemprop library: https://github.com/chemprop/chemprop/

To reproduce the anti-cancer without addtional features run the following command from the command-line:

chemprop_train --data_path ./data/labels_training_set_w_drugbank_id.csv \
--dataset_type classification \
--number_of_molecules 1 --smiles_columns Smiles \
--metric auc --extra_metrics prc-auc accuracy mcc \
--save_preds --save_smiles_splits \
--config_path ./data/full_data_hyperparams_w_rkdit.json \
--loss_function binary_cross_entropy \
--split_sizes 0.7 0.1 0.2 --target_columns cancer \
--split_type scaffold_balanced --save_dir ./model \
--num_folds 3 --ensemble_size 2 \

or use code/multimodal_learning/target_main.py to train via python code

To reproduce the anti-cancer with additional features run the multimodal learning code using the code/multimodal_learning/interactions_main.py to train a DDI model then train the chemprop model using code/multimodal_learning/target_main.py with the task cancer`` and uncomment lines 111 and 112 to add the addtional features

or from the commandline

chemprop_train --data_path ./data/labels_training_set_w_drugbank_id.csv \
--dataset_type classification \
--number_of_molecules 1 --smiles_columns Smiles \
--metric auc --extra_metrics prc-auc accuracy mcc \
--save_preds --save_smiles_splits \
--config_path ./data/full_data_hyperparams_w_rkdit.json \
--loss_function binary_cross_entropy \
--split_sizes 0.7 0.1 0.2 --target_columns cancer \
--split_type scaffold_balanced --save_dir ./model_DDI_DTI \
--num_folds 3 --ensemble_size 2 \
--features_path ./data/labels_training_set_w_drugbank_id_DDIFeature_256.csv ./data/labels_training_set_w_drugbank_id_TargetPCAFeature_64.csv

Predict with chemprop model

to predict with the chemprop model, please refer to https://github.com/chemprop/chemprop/#predicting on how to use saved trained models

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages