Skip to content

An unofficial PyTorch implementation of "Learning Loss for Active Learning"

Notifications You must be signed in to change notification settings

euphoria0-0/Learning-Loss-for-Active-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 

Repository files navigation

Learning Loss for Active Learning

An unofficial PyTorch implementation of the paper Learning Loss for Active Learning.

Requirements

torch
torchvision
matplotlib
tqdm
cv2
imageio
imutils

Usage

python main.py --task {clf OR detection OR hpe}
  • task
    • clf: image classification
    • detection: object detection
    • hpe: human pose estimation

image classification

  • dataset: CIFAR10 & CIFAR100
  • model: ResNet
  • metric: Accuracy
python main.py --task clf --dataset CIFAR10 --subset 10000 --num_epoch 200 --batch_size 128 --lr 0.1 --epoch_loss 120 --weights 1.0 --milestone 160

object detection

  • dataset: PASCAL VOC2007 & 2012
  • model: SSD (Single Shot Multibox Detector)
  • metric: mAP
python main.py --task detection --dataset VOC0712 --num_epoch 300 --batch_size 32 --lr 0.001 --epoch_loss 240 --weights 1.0 --milestone 240 

human pose estimation

python main.py --task hpe --dataset mpii --subset 5000 --num_epoch 125 --batch_size 6 --wdecay 0 --lr 0.00025 --epoch_loss 75 --weights 0.0001 --milestone 100 

References

About

An unofficial PyTorch implementation of "Learning Loss for Active Learning"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages