An unofficial PyTorch implementation of the paper Learning Loss for Active Learning.
torch
torchvision
matplotlib
tqdm
cv2
imageio
imutils
python main.py --task {clf OR detection OR hpe}
- task
clf
: image classificationdetection
: object detectionhpe
: human pose estimation
- dataset: CIFAR10 & CIFAR100
- model: ResNet
- metric: Accuracy
python main.py --task clf --dataset CIFAR10 --subset 10000 --num_epoch 200 --batch_size 128 --lr 0.1 --epoch_loss 120 --weights 1.0 --milestone 160
- dataset: PASCAL VOC2007 & 2012
- model: SSD (Single Shot Multibox Detector)
- metric: mAP
python main.py --task detection --dataset VOC0712 --num_epoch 300 --batch_size 32 --lr 0.001 --epoch_loss 240 --weights 1.0 --milestone 240
- dataset: MPII
- model: SHN (Stacked Hourglass Networks)
- metric: [email protected]
python main.py --task hpe --dataset mpii --subset 5000 --num_epoch 125 --batch_size 6 --wdecay 0 --lr 0.00025 --epoch_loss 75 --weights 0.0001 --milestone 100