Skip to content

Commit

Permalink
Merge pull request #53 from eth-cscs/release-0.5.4
Browse files Browse the repository at this point in the history
Release 0.5.4
  • Loading branch information
mschoengens authored Jan 8, 2019
2 parents 6d406cd + 27bf708 commit a1486b9
Show file tree
Hide file tree
Showing 11 changed files with 197 additions and 42 deletions.
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,9 @@ scientists by providing
# Documentation
For more information, check out the

* [Documentation](http://abcpy.readthedocs.io/en/v0.5.3)
* [Examples](https://github.com/eth-cscs/abcpy/tree/v0.5.3/examples) directory and
* [Reference](http://abcpy.readthedocs.io/en/v0.5.3/abcpy.html)
* [Documentation](http://abcpy.readthedocs.io/en/v0.5.4)
* [Examples](https://github.com/eth-cscs/abcpy/tree/v0.5.4/examples) directory and
* [Reference](http://abcpy.readthedocs.io/en/v0.5.4/abcpy.html)

Further, we provide a
[collection of models](https://github.com/eth-cscs/abcpy-models) for which ABCpy
Expand All @@ -54,7 +54,7 @@ finally CSCS (Swiss National Super Computing Center) for their generous support.

There is a paper in the proceedings of the 2017 PASC conference. In case you use
ABCpy for your publication, we would appreciate a citation. You can use
[this](https://github.com/eth-cscs/abcpy/blob/v0.5.3/doc/literature/DuttaS-ABCpy-PASC-2017.bib)
[this](https://github.com/eth-cscs/abcpy/blob/v0.5.4/doc/literature/DuttaS-ABCpy-PASC-2017.bib)
BibTex reference.


Expand Down
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
0.5.3
0.5.4
9 changes: 4 additions & 5 deletions abcpy/approx_lhd.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,11 +91,10 @@ def likelihood(self, y_obs, y_sim):
# print("DEBUG: robust_precision_sim_det computation..")
robust_precision_sim_det = np.linalg.det(robust_precision_sim)
# print("DEBUG: combining.")
result = pow(np.sqrt((1/(2*np.pi))*robust_precision_sim_det),self.stat_obs.shape[0])\
*np.exp(np.sum(-0.5*np.sum(np.array(self.stat_obs-mean_sim)* \
np.array(np.matrix(robust_precision_sim)*np.matrix(self.stat_obs-mean_sim).T).T, axis = 1)))

return result
tmp1 = robust_precision_sim * np.array(self.stat_obs.reshape(-1,1) - mean_sim.reshape(-1,1)).T
tmp2 = np.exp(np.sum(-0.5*np.sum(np.array(self.stat_obs-mean_sim) * np.array(tmp1).T, axis = 1)))
tmp3 = pow(np.sqrt((1/(2*np.pi)) * robust_precision_sim_det),self.stat_obs.shape[0])
return tmp2 * tmp3


class PenLogReg(Approx_likelihood, GraphTools):
Expand Down
92 changes: 92 additions & 0 deletions abcpy/discretemodels.py
Original file line number Diff line number Diff line change
Expand Up @@ -302,5 +302,97 @@ def pmf(self, input_values, x):
"""

pmf = poisson(int(input_values[0])).pmf(x)
self.calculated_pmf = pmf
return pmf



class DiscreteUniform(Discrete, ProbabilisticModel):
def __init__(self, parameters, name='DiscreteUniform'):
"""This class implements a probabilistic model following a Discrete Uniform distribution.
Parameters
----------
parameters: list
A list containing two entries, the upper and lower bound of the range.
name: string
The name that should be given to the probabilistic model in the journal file.
"""

if not isinstance(parameters, list):
raise TypeError('Input for Discrete Uniform has to be of type list.')
if len(parameters) != 2:
raise ValueError('Input for Discrete Uniform has to be of length 2.')

self._dimension = 1
input_parameters = InputConnector.from_list(parameters)
super(DiscreteUniform, self).__init__(input_parameters, name)
self.visited = False

def _check_input(self, input_values):
# Check whether input has correct type or format
if len(input_values) != 2:
raise ValueError('Number of parameters of FloorField model must be 2.')

# Check whether input is from correct domain
lowerbound = input_values[0] # Lower bound
upperbound = input_values[1] # Upper bound

if not isinstance(lowerbound, (int, np.int64, np.int32, np.int16)) or not isinstance(upperbound, (int, np.int64, np.int32, np.int16)) or lowerbound >= upperbound:
return False
return True

def _check_output(self, parameters):
"""
Checks parameter values given as fixed values. Returns False iff it is not an integer
"""
if not isinstance(parameters[0], (int, np.int32, np.int64)):
return False
return True

def forward_simulate(self, input_values, k, rng=np.random.RandomState()):
"""
Samples from the Discrete Uniform distribution associated with the probabilistic model.
Parameters
----------
input_values: list
List of input parameters, in the same order as specified in the InputConnector passed to the init function
k: integer
The number of samples to be drawn.
rng: random number generator
The random number generator to be used.
Returns
-------
list: [np.ndarray]
A list containing the sampled values as np-array.
"""

result = np.array(rng.randint(input_values[0], input_values[1], size=k, dtype=np.int64))
return [np.array([x]) for x in result]

def get_output_dimension(self):
return self._dimension

def pmf(self, input_values, x):
"""Evaluates the probability mass function at point x.
Parameters
----------
input_values: list
List of input parameters, in the same order as specified in the InputConnector passed to the init function
x: float
The point at which the pmf should be evaluated.
Returns
-------
float:
The pmf evaluated at point x.
"""
upperbound, lowerbound = input_values[0], input_values[1]
pmf = 1. / (upperbound - lowerbound + 1)
self.calculated_pmf = pmf
return pmf

5 changes: 2 additions & 3 deletions abcpy/distances.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import numpy as np
from glmnet import LogitNet
from sklearn import linear_model
from scipy import stats


class Distance(metaclass = ABCMeta):
Expand Down Expand Up @@ -211,8 +212,6 @@ def distance(self, d1, d2):

def dist_max(self):
return 1.0




class LogReg(Distance):
Expand Down Expand Up @@ -257,7 +256,7 @@ def distance(self, d1, d2):
training_set_labels = np.concatenate((label_s1, label_s2), axis=0).ravel()

reg_inv = 1e5
log_reg_model = linear_model.LogisticRegression(C=reg_inv, penalty='l1')
log_reg_model = linear_model.LogisticRegression(C=reg_inv, penalty='l1', max_iter=1000, solver='liblinear')
log_reg_model.fit(training_set_features, training_set_labels)
score = log_reg_model.score(training_set_features, training_set_labels)
distance = 2.0 * (score - 0.5)
Expand Down
67 changes: 51 additions & 16 deletions abcpy/inferences.py
Original file line number Diff line number Diff line change
Expand Up @@ -811,19 +811,17 @@ def sample(self, observations, steps, n_samples = 10000, n_samples_per_param = 1
break
# 2: calculate approximate lieklihood for new parameters
self.logger.info("Calculate approximate likelihood")
new_parameters_pds = self.backend.parallelize(new_parameters)
approx_likelihood_new_parameters_and_counter_pds = self.backend.map(self._approx_lik_calc, new_parameters_pds)
self.logger.debug("collect approximate likelihood from pds")
approx_likelihood_new_parameters_and_counter = self.backend.collect(approx_likelihood_new_parameters_and_counter_pds)
approx_likelihood_new_parameters, counter = [list(t) for t in zip(*approx_likelihood_new_parameters_and_counter)]

approx_likelihood_new_parameters = np.array(approx_likelihood_new_parameters).reshape(-1,1)
merged_sim_data_parameter = self.flat_map(new_parameters, self.n_samples_per_param, self._simulate_data)
# Compute likelihood for each parameter value
approx_likelihood_new_parameters, counter = self.simple_map(merged_sim_data_parameter, self._approx_calc)
approx_likelihood_new_parameters = np.array(approx_likelihood_new_parameters).reshape(-1, 1)

for count in counter:
self.simulation_counter+=count

# 3: calculate new weights for new parameters
self.logger.info("Calculating weights")
new_parameters_pds = self.backend.parallelize(new_parameters)
new_weights_pds = self.backend.map(self._calculate_weight, new_parameters_pds)
new_weights = np.array(self.backend.collect(new_weights_pds)).reshape(-1, 1)

Expand Down Expand Up @@ -874,38 +872,75 @@ def sample(self, observations, steps, n_samples = 10000, n_samples_per_param = 1

return journal

## Simple_map and Flat_map: Python wrapper for nested parallelization
def simple_map(self, data, map_function):
data_pds = self.backend.parallelize(data)
result_pds = self.backend.map(map_function, data_pds)
result = self.backend.collect(result_pds)
main_result, counter = [list(t) for t in zip(*result)]
return main_result, counter
def flat_map(self, data, n_repeat, map_function):
repeated_data = np.repeat(data, n_repeat, axis=0)
repeated_data_pds = self.backend.parallelize(repeated_data)
repeated_data__result_pds = self.backend.map(map_function, repeated_data_pds)
repeated_data_result = self.backend.collect(repeated_data__result_pds)
repeated_data, result = [list(t) for t in zip(*repeated_data_result)]
merged_result_data = []
for ind in range(0, data.shape[0]):
merged_result_data.append([[[result[np.int(i)][0][0] \
for i in
np.where(np.mean(repeated_data == data[ind, :], axis=1) == 1)[0]]],
data[ind, :]])
return merged_result_data

# define helper functions for map step
def _approx_lik_calc(self, theta):
def _simulate_data(self, theta):
"""
Compute likelihood for new parameters using approximate likelihood function
Simulate n_sample_per_param many datasets for new parameter
Parameters
----------
theta: numpy.ndarray
1xp matrix containing the model parameters, where p is the number of parameters
Returns
-------
(theta, sim_data)
tehta and simulate data
"""

# Simulate the fake data from the model given the parameter value theta
# print("DEBUG: Simulate model for parameter " + str(theta))
self.set_parameters(theta)
y_sim = self.simulate(1, self.rng)

return (theta, y_sim)

def _approx_calc(self, sim_data_parameter):
"""
Compute likelihood for new parameters using approximate likelihood function
Parameters
----------
sim_data_parameter: list
First element is the parameter and the second element is the simulated data
Returns
-------
float
The approximated likelihood function
"""
# Extract data and parameter
y_sim, theta = sim_data_parameter[0], sim_data_parameter[1]

# Simulate the fake data from the model given the parameter value theta
# print("DEBUG: Simulate model for parameter " + str(theta))
y_sim = self.simulate(self.n_samples_per_param, self.rng)
# print("DEBUG: Extracting observation.")
obs = self.accepted_parameters_manager.observations_bds.value()
# print("DEBUG: Computing likelihood...")


total_pdf_at_theta = 1.

lhd = self.likfun.likelihood(obs, y_sim)

# print("DEBUG: Likelihood is :" + str(lhd))
pdf_at_theta = self.pdf_of_prior(self.model, theta)

total_pdf_at_theta*=(pdf_at_theta*lhd)
total_pdf_at_theta *= (pdf_at_theta * lhd)

# print("DEBUG: prior pdf evaluated at theta is :" + str(pdf_at_theta))
return (total_pdf_at_theta, 1)
Expand Down Expand Up @@ -1553,7 +1588,7 @@ def sample(self, observations, steps, n_samples = 10000, n_samples_per_param = 1
seed_arr = self.rng.randint(0, np.iinfo(np.uint32).max, size=int(n_samples / temp_chain_length),
dtype=np.uint32)
rng_arr = np.array([np.random.RandomState(seed) for seed in seed_arr])
index_arr = np.linspace(0, n_samples / temp_chain_length - 1, n_samples / temp_chain_length).astype(
index_arr = np.linspace(0, n_samples // temp_chain_length - 1, n_samples // temp_chain_length).astype(
int).reshape(int(n_samples / temp_chain_length), )
rng_and_index_arr = np.column_stack((rng_arr, index_arr))
rng_and_index_pds = self.backend.parallelize(rng_and_index_arr)
Expand Down
13 changes: 7 additions & 6 deletions doc/source/DEVELOP.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,16 @@ new version `M.m.b':
1. Create a release branch `release-M.m.b`
2. Adapt `VERSION` file in the repos root directory: `echo M.m.b > VERSION`
3. Adapt `README.md` file: adapt links to correct version of `User Documentation` and `Reference`
4. Merge all desired feature branches into the release branch
5. Create a pull/ merge request: release branch -> master
4. Adapt `doc/source/DEVELOP.rst` file: to install correct version of ABCpy
5. Merge all desired feature branches into the release branch
6. Create a pull/ merge request: release branch -> master

After a successful merge:

5. Create tag vM.m.b (`git tag vM.m.b`)
6. Retag tag `stable` to the current version
7. Push the tag (`git push --tags`)
8. Create a release in GitHub
7. Create tag vM.m.b (`git tag vM.m.b`)
8. Retag tag `stable` to the current version
9. Push the tag (`git push --tags`)
10. Create a release in GitHub

The new tag on master will signal Travis to deploy a new package to Pypi while
the GitHub release is just for user documentation.
2 changes: 1 addition & 1 deletion doc/source/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ To create a package and install it, do
::

make package
pip3 install build/dist/abcpy-0.5.1-py3-none-any.whl
pip3 install build/dist/abcpy-0.5.4-py3-none-any.whl

Note that ABCpy requires Python3.

Expand Down
30 changes: 30 additions & 0 deletions tests/discretemodels_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,10 @@ class PoissonAPITests(AbstractAPIImplementationTests, unittest.TestCase):
model_types = [Poisson]
model_inputs = [[3]]

class DiscreteUniformTests(AbstractAPIImplementationTests, unittest.TestCase):
model_types = [DiscreteUniform]
model_inputs = [[10, 20]]

class CheckParametersAtInitializationTests(unittest.TestCase):
"""Tests that no probabilistic model with invalid parameters can be initialized."""

Expand Down Expand Up @@ -45,6 +49,14 @@ def test_Poisson(self):
with self.assertRaises(ValueError):
Poisson([2, 3])

def test_DiscreteUniform(self):
with self.assertRaises(TypeError):
DiscreteUniform(np.array([1, 2, 3]))

with self.assertRaises(ValueError):
DiscreteUniform([2, 3, 4])


class DimensionTests(unittest.TestCase):
"""Tests whether the dimensions of all discrete models are defined in the correct way."""

Expand All @@ -60,6 +72,10 @@ def test_Poisson(self):
Po = Poisson([3])
self.assertTrue(Po.get_output_dimension()==1)

def test_DiscreteUniform(self):
Du = DiscreteUniform([10, 20])
self.assertTrue(Du.get_output_dimension()==1)


class SampleFromDistributionTests(unittest.TestCase):
"""Tests the return value of forward_simulate for all discrete distributions."""
Expand All @@ -81,6 +97,13 @@ def test_Poisson(self):
self.assertTrue(isinstance(samples, list))
self.assertTrue(len(samples) == 3)

def test_DiscreteUniform(self):
Du = DiscreteUniform([10, 20])
samples = Du.forward_simulate(Du.get_input_values(), 3)
self.assertTrue(isinstance(samples, list))
self.assertTrue(len(samples) == 3)


class CheckParametersBeforeSamplingTests(unittest.TestCase):
"""Tests whether False will be returned if the input parameters of _check_parameters_before_sampling are not
accepted."""
Expand All @@ -104,5 +127,12 @@ def test_Poisson(self):
self.assertFalse(Po._check_input([3, 5]))
self.assertFalse(Po._check_input([-1]))

def test_DiscreteUniform(self):
Du = DiscreteUniform([10, 20])
self.assertFalse(Du._check_input([3.0, 5]))
self.assertFalse(Du._check_input([2, 6.0]))
self.assertFalse(Du._check_input([5, 2]))


if __name__ == '__main__':
unittest.main()
3 changes: 1 addition & 2 deletions tests/distances_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,7 @@ def test_distance(self):
self.assertEqual(self.distancefunc.distance(d1,d1), 0.0)

def test_dist_max(self):
self.assertTrue(self.distancefunc.dist_max() == 1.0)

self.assertTrue(self.distancefunc.dist_max() == 1.0)

if __name__ == '__main__':
unittest.main()
Loading

0 comments on commit a1486b9

Please sign in to comment.