Skip to content

Commit

Permalink
Merge pull request #38 from eth-cscs/release-0.5.1
Browse files Browse the repository at this point in the history
Release 0.5.1
  • Loading branch information
mschoengens authored Jul 4, 2018
2 parents 579f6d1 + d9fdfb4 commit 1beaa48
Show file tree
Hide file tree
Showing 9 changed files with 76 additions and 41 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,9 @@ scientists by providing
# Documentation
For more information, check out the

* [Documentation](http://abcpy.readthedocs.io/en/v0.5.0)
* [Examples](https://github.com/eth-cscs/abcpy/tree/v0.5.0/examples) directory and
* [Reference](http://abcpy.readthedocs.io/en/v0.5.0/abcpy.html)
* [Documentation](http://abcpy.readthedocs.io/en/v0.5.1)
* [Examples](https://github.com/eth-cscs/abcpy/tree/v0.5.1/examples) directory and
* [Reference](http://abcpy.readthedocs.io/en/v0.5.1/abcpy.html)

Further, we provide a
[collection of models](https://github.com/eth-cscs/abcpy-models) for which ABCpy
Expand Down
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
0.5.0
0.5.1
1 change: 1 addition & 0 deletions abcpy/continuousmodels.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,7 @@ def pdf(self, input_values, x):

lower_bound = input_values[:self.get_output_dimension()]
upper_bound = input_values[self.get_output_dimension():]

if (np.product(np.greater_equal(x, np.array(lower_bound)) * np.less_equal(x, np.array(upper_bound)))):
pdf_value = 1. / np.product(np.array(upper_bound) - np.array(lower_bound))
else:
Expand Down
33 changes: 29 additions & 4 deletions abcpy/graphtools.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,31 @@ def pdf_of_prior(self, models, parameters, mapping=None, is_root=True):
Calculates the joint probability density function of the prior of the specified models at the given parameter values.
Commonly used to check whether new parameters are valid given the prior, as well as to calculate acceptance probabilities.
Parameters
----------
models: list of abcpy.ProbabilisticModel objects
Defines the models for which the pdf of their prior should be evaluated
parameters: python list
The parameters at which the pdf should be evaluated
mapping: list of tupels
Defines the mapping of probabilistic models and index in a parameter list.
is_root: boolean
A flag specifying whether the provided models are the root models. This is to ensure that the pdf is calculated correctly.
Returns
-------
list
The resulting pdf,as well as the next index to be considered in the parameters list.
"""
self.set_parameters(parameters)
result = self._recursion_pdf_of_prior(models, parameters, mapping, is_root)
return result

def _recursion_pdf_of_prior(self, models, parameters, mapping=None, is_root=True):
"""
Calculates the joint probability density function of the prior of the specified models at the given parameter values.
Commonly used to check whether new parameters are valid given the prior, as well as to calculate acceptance probabilities.
Parameters
----------
models: list of abcpy.ProbabilisticModel objects
Expand Down Expand Up @@ -138,23 +163,23 @@ def pdf_of_prior(self, models, parameters, mapping=None, is_root=True):
for parent_index, parent in enumerate(model.get_input_models()):
# Only calculate the pdf if the parent has never been visited for this model
if(not(visited_parents[parent_index])):
pdf = self.pdf_of_prior([parent], parameters, mapping=mapping, is_root=False)
pdf = self._recursion_pdf_of_prior([parent], parameters, mapping=mapping, is_root=False)
input_models = model.get_input_models()
for j in range(len(input_models)):
if input_models[j][0] == parent:
visited_parents[j]=True
result[i]*=pdf
result[i] *= pdf
if(not(is_root)):
if(model.calculated_pdf is None):
result[i] *= model.pdf(model.get_input_values(),relevant_parameters)
else:
result[i]*=model.calculated_pdf
result[i] *= 1

# Multiply the pdfs of all roots together to give an overall pdf.
temporary_result = result
result = 1.
for individual_result in temporary_result:
result*=individual_result
result *= individual_result

return result

Expand Down
22 changes: 14 additions & 8 deletions abcpy/inferences.py
Original file line number Diff line number Diff line change
Expand Up @@ -234,7 +234,7 @@ def sample(self, observations, n_samples, n_samples_per_param, epsilon, full_out

journal.add_parameters(accepted_parameters)
journal.add_weights(np.ones((n_samples, 1)))

self.accepted_parameters_manager.update_broadcast(self.backend, accepted_parameters=accepted_parameters)
names_and_parameters = self._get_names_and_parameters()
journal.add_user_parameters(names_and_parameters)

Expand Down Expand Up @@ -482,7 +482,8 @@ def sample(self, observations, steps, epsilon_init, n_samples = 10000, n_samples
if (full_output == 1 and aStep <= steps - 1) or (full_output == 0 and aStep == steps - 1):
journal.add_parameters(accepted_parameters)
journal.add_weights(accepted_weights)

self.accepted_parameters_manager.update_broadcast(self.backend, accepted_parameters=accepted_parameters,
accepted_weights=accepted_weights)
names_and_parameters = self._get_names_and_parameters()
journal.add_user_parameters(names_and_parameters)

Expand Down Expand Up @@ -830,7 +831,8 @@ def sample(self, observations, steps, n_samples = 10000, n_samples_per_param = 1
journal.add_parameters(accepted_parameters)
journal.add_weights(accepted_weights)
journal.add_opt_values(approx_likelihood_new_parameters)

self.accepted_parameters_manager.update_broadcast(self.backend, accepted_parameters=accepted_parameters,
accepted_weights=accepted_weights)
names_and_parameters = self._get_names_and_parameters()
journal.add_user_parameters(names_and_parameters)
journal.number_of_simulations.append(self.simulation_counter)
Expand Down Expand Up @@ -1050,6 +1052,7 @@ def sample(self, observations, steps, epsilon, n_samples = 10000, n_samples_per_
samples_until = 0

for aStep in range(0, steps):
print(aStep)
if(aStep==0 and journal_file is not None):
accepted_parameters=journal.parameters[-1]
accepted_weights=journal.weights[-1]
Expand Down Expand Up @@ -1103,7 +1106,7 @@ def sample(self, observations, steps, epsilon, n_samples = 10000, n_samples_per_
new_parameters = np.array(new_parameters)
new_distances = np.array(new_distances)
new_all_distances = np.concatenate(new_all_distances)
index = index_arr
index = np.array(index)
acceptance = np.array(acceptance)

# Reading all_distances at Initial step
Expand Down Expand Up @@ -1152,7 +1155,8 @@ def sample(self, observations, steps, epsilon, n_samples = 10000, n_samples_per_
if full_output == 1:
journal.add_parameters(accepted_parameters)
journal.add_weights(accepted_weights)

self.accepted_parameters_manager.update_broadcast(self.backend, accepted_parameters=accepted_parameters,
accepted_weights=accepted_weights)
names_and_parameters = self._get_names_and_parameters()
journal.add_user_parameters(names_and_parameters)
journal.number_of_simulations.append(self.simulation_counter)
Expand Down Expand Up @@ -1191,7 +1195,7 @@ def sample(self, observations, steps, epsilon, n_samples = 10000, n_samples_per_
if full_output == 0:
journal.add_parameters(accepted_parameters)
journal.add_weights(accepted_weights)

self.accepted_parameters_manager.update_broadcast(self.backend,accepted_parameters=accepted_parameters,accepted_weights=accepted_weights)
names_and_parameters = self._get_names_and_parameters()
journal.add_user_parameters(names_and_parameters)
journal.number_of_simulations.append(self.simulation_counter)
Expand Down Expand Up @@ -1311,7 +1315,6 @@ def _accept_parameter(self, data):
distance = self.distance.distance(self.accepted_parameters_manager.observations_bds.value(), y_sim)
all_distances.append(distance)
acceptance = rng.binomial(1, np.exp(-distance / self.epsilon), 1)

acceptance = 1
else:
## Select one arbitrary particle:
Expand Down Expand Up @@ -1545,6 +1548,8 @@ def sample(self, observations, steps, n_samples = 10000, n_samples_per_param = 1
journal.add_parameters(accepted_parameters)
journal.add_weights(accepted_weights)
journal.add_opt_values(accepted_cov_mats)
self.accepted_parameters_manager.update_broadcast(self.backend, accepted_parameters=accepted_parameters,
accepted_weights=accepted_weights)
names_and_parameters = self._get_names_and_parameters()
journal.add_user_parameters(names_and_parameters)
journal.number_of_simulations.append(self.simulation_counter)
Expand All @@ -1562,7 +1567,8 @@ def sample(self, observations, steps, n_samples = 10000, n_samples_per_param = 1
journal.add_parameters(accepted_parameters)
journal.add_weights(accepted_weights)
journal.add_opt_values(accepted_cov_mats)

self.accepted_parameters_manager.update_broadcast(self.backend, accepted_parameters=accepted_parameters,
accepted_weights=accepted_weights)
names_and_parameters = self._get_names_and_parameters()
journal.add_user_parameters(names_and_parameters)
journal.number_of_simulations.append(self.simulation_counter)
Expand Down
6 changes: 2 additions & 4 deletions abcpy/statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,10 +71,10 @@ def _polynomial_expansion(self, summary_statistics):
if not isinstance(summary_statistics, (np.ndarray)):
raise TypeError('Summary statisticss is not of allowed types')
# Include the polynomial expansion
result = summary_statistics
result = summary_statistics
for ind in range(2,self.degree+1):
result = np.column_stack((result,np.power(summary_statistics,ind)))

# Include the cross-product term
if self.cross == True and summary_statistics.shape[1]>1:
# Convert to a matrix
Expand All @@ -93,7 +93,6 @@ class Identity(Statistics):
def __init__(self, degree = 2, cross = True):
self.degree = degree
self.cross = cross


def statistics(self, data):
if isinstance(data, list):
Expand All @@ -105,7 +104,6 @@ def statistics(self, data):
data = np.concatenate(data).reshape(len(data),-1)
else:
raise TypeError('Input data should be of type list, but found type {}'.format(type(data)))

# Expand the data with polynomial expansion
result = self._polynomial_expansion(data)

Expand Down
2 changes: 1 addition & 1 deletion doc/source/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ To create a package and install it do
::

make package
pip3 install build/dist/abcpy-0.4.0-py3-none-any.whl
pip3 install build/dist/abcpy-0.5.1-py3-none-any.whl

Note that ABCpy requires Python3.

Expand Down
31 changes: 18 additions & 13 deletions tests/graphtools_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -219,6 +219,7 @@ def test(self):
mapping, index = sampler._get_mapping()
self.assertTrue(mapping==[(B1, 0),(N2, 1),(N1,2)])

from abcpy.continuousmodels import Uniform

class PdfOfPriorTests(unittest.TestCase):
"""Tests the implemetation of pdf_of_prior"""
Expand All @@ -229,33 +230,37 @@ def __init__(self, parameters):
def pdf(self, input_values, x):
return x

self.N1 = Mockobject([1, 0.1])
self.N2 = Mockobject([self.N1, 0.1])
self.N3 = Mockobject([0.1, 0.01])
self.graph1 = Mockobject([self.N2, self.N3])
self.graph2 = Mockobject([2, self.N3])
self.N1 = Uniform([[1.3], [1.55]], name='n1')
self.N2 = Uniform([[self.N1], [1.60]], name='n2')
self.N3 = Uniform([[2], [4]], name='n3')
self.graph1 = Uniform([[self.N1], [self.N2]], name='graph1')
self.graph2 = Uniform([[.5], [self.N3]])

self.graph = [self.graph1, self.graph2]

statistics_calculator = Identity(degree=2, cross=False)
distance_calculator = LogReg(statistics_calculator)
backend = Backend()

self.sampler = RejectionABC(self.graph, [distance_calculator, distance_calculator], backend)
self.sampler1 = RejectionABC([self.graph1], [distance_calculator], backend)
self.sampler2 = RejectionABC([self.graph2], [distance_calculator], backend)
self.sampler3 = RejectionABC(self.graph, [distance_calculator, distance_calculator], backend)

rng = np.random.RandomState(1)

self.sampler.sample_from_prior(rng=rng)

self.pdf = self.sampler.pdf_of_prior(self.sampler.model, [1, 2, 4])
self.pdf1 = self.sampler1.pdf_of_prior(self.sampler1.model, [1.32088846, 1.42945274])
self.pdf2 = self.sampler2.pdf_of_prior(self.sampler2.model, [3])
self.pdf3 = self.sampler3.pdf_of_prior(self.sampler3.model, [1.32088846, 1.42945274, 3])

def test_return_value(self):
"""Tests whether the return value is float."""
self.assertTrue(isinstance(self.pdf, float))
self.assertTrue(isinstance(self.pdf1, float))
self.assertTrue(isinstance(self.pdf2, float))
self.assertTrue(isinstance(self.pdf3, float))

def test_result(self):
"""Test whether pdf calculation works as intended"""
self.assertTrue(self.pdf==32)
self.assertTrue(self.pdf1 == 14.331188169432183)
self.assertTrue(self.pdf2 == 0.5)
self.assertTrue(self.pdf3 == 7.1655940847160915)


if __name__ == '__main__':
Expand Down
14 changes: 7 additions & 7 deletions tests/inferences_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,8 +91,8 @@ def test_sample(self):
self.assertEqual(mu_sample_shape, (10,1))
self.assertEqual(sigma_sample_shape, (10,1))
self.assertEqual(weights_sample_shape, (10,1))
self.assertLess(abs(mu_post_mean - (-3.64971)), 1e-3)
self.assertLess(abs(sigma_post_mean - 4.1925), 1e-3)
self.assertLess(abs(mu_post_mean - (-3.55548377)), 1e-3)
self.assertLess(abs(sigma_post_mean - 5.87147492), 1e-3)

self.assertFalse(journal.number_of_simulations == 0)

Expand All @@ -111,8 +111,8 @@ def test_sample(self):
self.assertEqual(mu_sample_shape, (10,1))
self.assertEqual(sigma_sample_shape, (10,1))
self.assertEqual(weights_sample_shape, (10,1))
self.assertLess(abs(mu_post_mean - (-3.09297) ), 1e-3)
self.assertLess(abs(sigma_post_mean - 5.78645), 1e-3)
self.assertLess(abs(mu_post_mean - (-3.88512394) ), 1e-3)
self.assertLess(abs(sigma_post_mean - 2.90352432), 1e-3)

self.assertFalse(journal.number_of_simulations == 0)

Expand Down Expand Up @@ -254,8 +254,8 @@ def test_sample(self):
self.assertEqual(mu_sample_shape, (10,1))
self.assertEqual(sigma_sample_shape, (10,1))
self.assertEqual(weights_sample_shape, (10,1))
self.assertLess(mu_post_mean - 2.120856674879079, 10e-2)
self.assertLess(sigma_post_mean - 6.711723792285109, 10e-2)
self.assertLess(mu_post_mean - 0.55859197, 10e-2)
self.assertLess(sigma_post_mean - 7.03987723, 10e-2)

self.assertFalse(journal.number_of_simulations == 0)

Expand Down Expand Up @@ -314,7 +314,7 @@ def test_sample(self):
self.assertEqual(sigma_sample_shape, (10,1))
self.assertEqual(weights_sample_shape, (10,1))
self.assertLess(mu_post_mean - (-0.81410299), 10e-2)
self.assertLess(sigma_post_mean - 5.51827908, 10e-2)
self.assertLess(sigma_post_mean - 9.25442675, 10e-2)

self.assertFalse(journal.number_of_simulations == 0)

Expand Down

0 comments on commit 1beaa48

Please sign in to comment.