Skip to content

Commit

Permalink
ref
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Nov 12, 2024
1 parent 4308c2a commit fec5824
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 3 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,10 @@ relations:
detail: 'GKP codes have been concatenated with QPCs \cite{arxiv:2102.01374}.'
- code_id: 488_color
detail: 'GKP codes have been concatenated with 4.8.8 color codes \cite{arxiv:2112.14447}.'
- code_id: triangular_color
detail: 'GKP codes have been concatenated with the 6.6.6 color code \cite{arxiv:2411.04277}.'
- code_id: stab_5_1_3
detail: 'GKP codes have been concatenated with the five-qubit code \cite{arxiv:2411.04277}.'



Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ description: |
features:
rate: 'The error threshold under ML decoding of GKP-rotated-surface codes comes close to \(\sigma\approx 0.6065\), at which the best-known lower bound \cite{arxiv:quant-ph/9912067} on the capacity vanishes \cite{arxiv:2411.04277}.'
decoders:
- 'Decoder for GKP-toric code \cite{arxiv:1810.00047}.'
- 'MWPM closest point decoder \cite{arxiv:2303.04702}.'
Expand All @@ -24,7 +25,7 @@ features:
- '\(0.602\) threshold displacement standard deviation for GKP-surface codes with analog side information using MWPM closest point decoder \cite{arxiv:2303.04702}.'
threshold:
- 'The threshold under displacement noise using ML decoding of GKP-toric codes corresponds to the value of a critical point of a 3D compact QED model in the presence of a quenched random gauge field \cite{arxiv:1810.00047}. The GKP-toric decoder yields a threshold displacement standard deviation of \(\sigma = 0.243\) \cite{arxiv:1810.00047}, but this noise model did not properly take into account error propagation \cite{arxiv:1908.03579}.'
- '\(11.2\)dB of squeezing under displacement noise using MWPM decoding for GKP-rotated-surface codes \cite{arxiv:1908.03579,arxiv:2103.06994}.'
- '\(11.2\)dB of squeezing under displacement noise using MWPM decoding for GKP-rotated-surface codes \cite{arxiv:1908.03579,arxiv:2103.06994}. The error threshold under ML decoding of GKP-rotated-surface codes comes close to \(\sigma\approx 0.6065\), at which the best-known lower bound \cite{arxiv:quant-ph/9912067} on the capacity vanishes \cite{arxiv:2411.04277}.'



Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,7 @@ description: |
protection: 'The level of protection against displacement errors is quantified by the Euclidean code distance \(\Delta=\min_{x\in {\mathcal{L}}^{\perp}\setminus {\mathcal{L}}} \|x\|_2\) \cite{arxiv:2109.14645}.'

features:
rate: 'Transmission schemes with multimode GKP codes achieve, up to a constant-factor offset, the capacity of \hyperref[topic:ad]{AD}, displacement-noise, and thermal-noise Gaussian loss channels \cite{arxiv:quant-ph/0105058,arxiv:1708.07257,arxiv:1801.04731,arxiv:1801.07271}.
Particular random lattice families of multimode GKP codes achieve the hashing bound of the displacement noise channel \cite{arxiv:quant-ph/0105058}.'
rate: 'Transmission schemes with multimode GKP codes achieve, up to a constant-factor offset, the capacity of \hyperref[topic:ad]{AD}, a lower bound on displacement-noise, and a lower bound on thermal-noise Gaussian channel capacities \cite{arxiv:quant-ph/0105058,arxiv:1708.07257,arxiv:1801.04731,arxiv:1801.07271}. Particular random lattice families of multimode GKP codes achieve the hashing bound of the displacement noise channel \cite{arxiv:quant-ph/0105058}.'

encoders:
- 'GKP codes with fixed \(n\) and prime-dimensional logical Hilbert space are symplectically related to a disjoint product of single-mode GKP codes on \(n\) modes, such that encoding via Gaussian unitaries is possible.'
Expand Down

0 comments on commit fec5824

Please sign in to comment.