Skip to content

Commit

Permalink
unentangled_permutation_invariant
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed May 3, 2024
1 parent 614f194 commit ae6d9ae
Show file tree
Hide file tree
Showing 19 changed files with 89 additions and 37 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
code_id: constant_excitation_permutation_invariant
physical: oscillators

name: 'Ouyang-Chao constant-excitation permutation-invariant code'
name: 'Ouyang-Chao constant-excitation PI code'
short_name: 'Ouyang-Chao'
introduced: '\cite{arxiv:1809.09801}'

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,8 @@

code_id: permutation_invariant

name: 'Permutation-invariant code'
name: 'Permutation-invariant (PI) code'
short_name: 'PI'
introduced: '\cite{arxiv:quant-ph/0304153}'

description: |
Expand All @@ -18,7 +19,7 @@ protection: |
Permutation invariant codes of distance \(d\) can protect against \(d-1\) deletion errors \cite{arxiv:2001.08405,arxiv:2004.00814,arxiv:2102.02494,arxiv:2102.03015}, i.e., erasures of subsystems at unknown locations.
Other protection depends on the code family.
The GNU permutation-invariant family (parameterized by \(t\)) protects against arbitrary weight \(t\) qubit errors and approximately corrects spontaneous decay errors \cite{arxiv:1302.3247,doi:10.1103/PhysRevA.93.042340}.
The GNU PI family (parameterized by \(t\)) protects against arbitrary weight \(t\) qubit errors and approximately corrects spontaneous decay errors \cite{arxiv:1302.3247,doi:10.1103/PhysRevA.93.042340}.
Other related codes protect against amplitude damping \cite{doi:10.1109/TIT.2019.2956142} while admitting a constant number of excitations.
features:
Expand Down
2 changes: 2 additions & 0 deletions codes/quantum/properties/stabilizer/qldpc/qldpc.yml
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@ protection: |
\delta = \frac{d}{n} \leq \frac{1}{2} - \Omega\left(\frac{1}{r}\right)~.
\end{align}
features:
rate: |
Asymptotic scaling of \(k\) and \(d\) with \(n\) depends heavily on the code construction.
Expand Down Expand Up @@ -101,6 +102,7 @@ notes:
- 'Infleqtion QLDPC package for estimating distance and creating various qubit and Galois-qudit QLDPC CSS codes \cite{manual:{Michael A. Perlin. qLDPC. https://github.com/Infleqtion/qLDPC, 2023.}}'
- 'Links to code tables of notable QLDPC codes \cite{arxiv:2103.06309}.'
- 'Reviews of QLDPC codes provided in Refs. \cite{doi:10.1109/ACCESS.2015.2503267,arxiv:2103.06309}.'
- 'There exist distance-dependent \cite[Thm. 1]{arxiv:2405.01332} and rate-dependent \cite[Thm. 3ii]{arxiv:2405.01332} lower bounds on the degree of entanglement of a qubit QLDPC code.'

relations:
parents:
Expand Down
2 changes: 1 addition & 1 deletion codes/quantum/qubits/nonstabilizer/eth.yml
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ relations:
- code_id: topological
detail: 'ETH codewords, like topological codewords, are locally indistinguishable.'
- code_id: qubit_permutation_invariant
detail: 'Several instances of ETH codes contain permutation-invariant qubit codewords.'
detail: 'Several instances of ETH codes contain PI qubit codewords.'


# Begin Entry Meta Information
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ code_id: binary_dihedral_permutation_invariant
physical: qubits
logical: qubits

name: 'Binary dihedral permutation-invariant code'
name: 'Binary dihedral PI code'
introduced: '\cite{arxiv:2310.17652}'

description: |
Expand All @@ -29,20 +29,20 @@ relations:
parents:
- code_id: qubit_permutation_invariant
- code_id: j_gross
detail: 'Binary dihedral permutation-invariant codes can be interpreted as Clifford single-spin codes.'
detail: 'Binary dihedral PI codes can be interpreted as Clifford single-spin codes.'
cousins:
- code_id: small_distance_quantum
detail: 'The first and second families of binary dihedral permutation-invariant codes have distance three, and the third family has the member \(((27,2,5))\).'
detail: 'The first and second families of binary dihedral PI codes have distance three, and the third family has the member \(((27,2,5))\).'
- code_id: combinatorial_permutation_invariant
detail: 'The \(Q_{3,1,2m-4,+}\) and \(Q_{3,1,2^m-4,+}\) combinatorial permutation-invariant codes reduce to the \(((2m+3,2,3))\) and \(((2^{m-1}+3,2,3))\) binary dihedral permutation-invariant codes, respectively \cite[Prop. 5.6]{arxiv:2310.05358}.'
detail: 'The \(Q_{3,1,2m-4,+}\) and \(Q_{3,1,2^m-4,+}\) combinatorial PI codes reduce to the \(((2m+3,2,3))\) and \(((2^{m-1}+3,2,3))\) binary dihedral PI codes, respectively \cite[Prop. 5.6]{arxiv:2310.05358}.'
- code_id: xp_stabilizer
detail: 'Binary dihedral permutation invariant codewords form error spaces of XP stabilizer codes.'
- code_id: diagonal_clifford
detail: 'The \(((2^{r-1}+3,2,3))\) family of binary dihedral permutation-invariant codes realizes the same transversal gates as the \([[2^r-1,1,3]]\) quantum Reed-Muller codes, but require fewer qubits in almost all cases.'
detail: 'The \(((2^{r-1}+3,2,3))\) family of binary dihedral PI codes realizes the same transversal gates as the \([[2^r-1,1,3]]\) quantum Reed-Muller codes, but require fewer qubits in almost all cases.'
- code_id: stab_49_1_5
detail: 'The \(((27,2,5))\) binary dihedral permutation-invariant code realizes the \(T\) gate transversally, but requires fewer qubits than the \([[49,1,5]]\) triorthogonal code.'
detail: 'The \(((27,2,5))\) binary dihedral PI code realizes the \(T\) gate transversally, but requires fewer qubits than the \([[49,1,5]]\) triorthogonal code.'
- code_id: stab_15_1_3
detail: 'The \(((11,2,3))\) binary dihedral permutation-invariant code realizes the \(T\) gate transversally, but requires fewer qubits than the \([[15,1,3]]\) quantum Reed-Muller code.'
detail: 'The \(((11,2,3))\) binary dihedral PI code realizes the \(T\) gate transversally, but requires fewer qubits than the \([[15,1,3]]\) quantum Reed-Muller code.'


# Begin Entry Meta Information
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,11 @@ code_id: combinatorial_permutation_invariant
physical: qubits
logical: qubits

name: 'Combinatorial permutation-invariant code'
name: 'Combinatorial PI code'
introduced: '\cite{arxiv:2310.05358}'

description: |
A member of a family of permutation-invariant quantum codes whose correction properties are derived from solving a family of combinatorial identities.
A member of a family of PI quantum codes whose correction properties are derived from solving a family of combinatorial identities.
The code encodes one logical qubit in superpositions of \hyperref[topic:dicke]{Dicke states} whose coefficients are square roots of ratios of binomial coefficients.
protection: |
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ name: 'Four-qubit single-deletion code'
introduced: '\cite{arxiv:2001.08405,arxiv:2004.00814}'

description: |
Four-qubit permutation-invariant code that is the smallest qubit code to correct one deletion error.
Four-qubit PI code that is the smallest qubit code to correct one deletion error.
In terms of \hyperref[topic:dicke]{Dicke states}, a basis of logical codewords is
\begin{align}
Expand All @@ -34,7 +34,7 @@ relations:
- code_id: stab_4_2_2
detail: 'A basis of codewords for the four-qubit single-deletion code consists of the \(|\overline{00}\rangle\) and \(|\overline{01}\rangle+|\overline{10}\rangle+|\overline{11}\rangle\)states of the four-qubit code.'
- code_id: combinatorial_permutation_invariant
detail: 'The combinatorial permutation-invariant code \(Q_{1,1,1,-}\) is another example of a four-qubit code correcting a single deletion error \cite[Sec. 5.1]{arxiv:2310.05358}.'
detail: 'The combinatorial PI code \(Q_{1,1,1,-}\) is another example of a four-qubit code correcting a single deletion error \cite[Sec. 5.1]{arxiv:2310.05358}.'


# Begin Entry Meta Information
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,12 @@ code_id: gnu_permutation_invariant
physical: spins
logical: qubits

name: 'GNU permutation-invariant code'
name: 'GNU PI code'
short_name: 'GNU'
introduced: '\cite{arxiv:1302.3247,arxiv:1512.02469}'

description: |
Permutation-invariant code whose codewords can be expressed as superpositions of \hyperref[topic:dicke]{Dicke states} with coefficients are square-roots of the binomial distribution.
PI code whose codewords can be expressed as superpositions of \hyperref[topic:dicke]{Dicke states} with coefficients are square-roots of the binomial distribution.
In terms of \hyperref[topic:dicke]{Dicke states}, logical codewords for codes encoding a single qubit \cite{arxiv:1302.3247} are
\begin{align}
Expand All @@ -29,24 +29,27 @@ features:
decoders:
- 'For a family of shifted gnu codes, decoding can be done using projection, probability amplitude rebalancing, and gate teleportation in time \(O(n^2)\) \cite{arxiv:2102.02494}.'

notes:
- 'The degree of entanglement in (non-concatenated) GNU codes scales at most logarithmically in their distance \cite[Appx. D]{arxiv:2405.01332}.'


relations:
parents:
- code_id: qudit_gnu_permutation_invariant
detail: 'Qudit GNU codes encoding logical qubits reduce to GNU codes.'
cousins:
- code_id: combinatorial_permutation_invariant
detail: 'Combinatorial permutation-invariant codes \(Q_{g,(m-1)/2,g-1,+}\) are GNU codes for odd \(m\) \cite[Prop. 5.4]{arxiv:2310.05358}.'
detail: 'Combinatorial PI codes \(Q_{g,(m-1)/2,g-1,+}\) are GNU codes for odd \(m\) \cite[Prop. 5.4]{arxiv:2310.05358}.'
- code_id: bacon_shor
detail: 'GNU codes of length \((2t+1)^2\) result from projecting Bacon-Shor codes into the permutation-invariant qubit subspace \cite{arxiv:1302.3247}.'
detail: 'GNU codes of length \((2t+1)^2\) result from projecting Bacon-Shor codes into the PI qubit subspace \cite{arxiv:1302.3247}.'
- code_id: hamiltonian
detail: 'GNU codes lie within the ground state of ferromagnetic Heisenberg models without an external magnetic field \cite{arxiv:1904.01458}.'
- code_id: approximate_qecc
detail: 'GNU codes protect approximately against amplitude damping errors.'
- code_id: binomial
detail: 'Binomial codes and GNU codes related via the Holstein-Primakoff mapping \cite{doi:10.1103/PhysRev.58.1098} (see also \cite{doi:10.2307/3212170}). A qudit generalization of GNU codes can be obtained from qudit binomial codes \cite[Appx. C]{arxiv:1708.05010}.'
- code_id: metopt
detail: 'GNU codes can be used to sense signals within the permutation-invariant subspace \cite{arxiv:2212.06285}.'
detail: 'GNU codes can be used to sense signals within the PI subspace \cite{arxiv:2212.06285}.'


# - code_id: gkp
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,13 @@ code_id: qudit_gnu_permutation_invariant
physical: spins
logical: qudits

name: 'Qudit GNU permutation-invariant code'
name: 'Qudit GNU PI code'
short_name: 'Qudit GNU'
introduced: '\cite{arxiv:1604.07925}'

description: |
Extension of the GNU permutation-invariant codes to those encoding logical qudits into physical qubits.
Codewords can be expressed as superpositions of \hyperref[topic:dicke]{Dicke states} with coefficients are square-roots of polynomial coefficients, with the case of binomial coefficients reducing to the GNU permutation-invariant codes.
Extension of the GNU PI codes to those encoding logical qudits into physical qubits.
Codewords can be expressed as superpositions of \hyperref[topic:dicke]{Dicke states} with coefficients are square-roots of polynomial coefficients, with the case of binomial coefficients reducing to the GNU PI codes.
relations:
Expand Down
6 changes: 3 additions & 3 deletions codes/quantum/qubits/permutation_invariant/gnu/ruskai.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ name: '\(((9,2,3))\) Ruskai code'
introduced: '\cite{arxiv:quant-ph/9906114}'

description: |
Nine-qubit permutation-invariant code that protects against single-qubit errors as well as two-qubit errors arising from exchange processes.
Nine-qubit PI code that protects against single-qubit errors as well as two-qubit errors arising from exchange processes.
In terms of \hyperref[topic:dicke]{Dicke states}, the codewords are
\begin{align}
Expand All @@ -28,11 +28,11 @@ protection: |
relations:
parents:
- code_id: gnu_permutation_invariant
detail: 'The \(((9,2,3))\) Ruskai code is a GNU permutation-invariant code \cite{arxiv:1302.3247}.'
detail: 'The \(((9,2,3))\) Ruskai code is a GNU PI code \cite{arxiv:1302.3247}.'
- code_id: small_distance_quantum
cousins:
- code_id: shor_nine
detail: 'The \(((9,2,3))\) Ruskai code results from projecting the Shor code into the permutation-invariant qubit subspace \cite{arxiv:quant-ph/9906114}.'
detail: 'The \(((9,2,3))\) Ruskai code results from projecting the Shor code into the PI qubit subspace \cite{arxiv:quant-ph/9906114}.'


# Begin Entry Meta Information
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ name: '\(((7,2,3))\) Pollatsek-Ruskai code'
introduced: '\cite{arxiv:quant-ph/0304153,arxiv:2005.10910,arxiv:2305.07023}'

description: |
Seven-qubit permutation-invariant code that realizes gates from the binary icosahedral group transversally.
Seven-qubit PI code that realizes gates from the binary icosahedral group transversally.
Can also be interpreted as a spin-\(7/2\) single-spin code.
The codespace projection is a projection onto an irrep of the binary icosahedral group \(2I\).
Expand All @@ -30,7 +30,7 @@ features:
relations:
parents:
- code_id: combinatorial_permutation_invariant
detail: 'The Pollatsek-Ruskai code is equivalent to the \(Q_{2,1,2,-}\) combinatorial permutation-invariant code \cite[Sec. 5.2]{arxiv:2310.05358}.'
detail: 'The Pollatsek-Ruskai code is equivalent to the \(Q_{2,1,2,-}\) combinatorial PI code \cite[Sec. 5.2]{arxiv:2310.05358}.'
- code_id: t_group
detail: 'The \(((7,2,3))\) Pollatsek-Ruskai code admits a transversal representation of the twisted \(1\)-group \(2I\) \cite{arxiv:2402.01638}.'
- code_id: j_gross
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,20 +7,20 @@ code_id: qubit_permutation_invariant
physical: qubits
# Qudit GNU codes don't encode logical qubits

name: 'Permutation-invariant qubit code'
name: 'PI qubit code'

description: |
Block quantum code defined on two-dimensional subsystems such that any permutation of the subsystems leaves any codeword invariant.
\begin{defterm}{Dicke states}
\label{topic:dicke}
For \(n\)-qubit block codes, an often used basis for the \(n+1\)-dimensional permutation-invariant subspace consists of the Dicke states \(|D^n_w\rangle\) -- normalized permutation-invariant states of \(w\) excitations, i.e., a normalized sum over all binary-string basis elements with \(w\) ones and \(n - w\) zeroes.
For \(n\)-qubit block codes, an often used basis for the \(n+1\)-dimensional PI subspace consists of the Dicke states \(|D^n_w\rangle\) -- normalized PI states of \(w\) excitations, i.e., a normalized sum over all binary-string basis elements with \(w\) ones and \(n - w\) zeroes.
For example, the single-excitation Dicke state on three qubits is
\begin{align}
|D_{1}^{3}\rangle=\frac{1}{\sqrt{3}}\left(|001\rangle+|010\rangle+|100\rangle\right)~.
\end{align}
The \(n+1\)-dimensional permutation-invariant space can be thought of as a standalone spin-\(n/2\) quantum system, yielding a way to convert between permutation-invatiant qubit codes and \(SU(2)\) spin codes.
A single-spin code for the \(SU(2)\) group correcting spherical tensors can be mapped into a permutation-invariant qubit code with an analogous distance \cite{arxiv:2304.08611}\cite[Thm. 1]{arxiv:2310.17652}.
The \(n+1\)-dimensional PI space can be thought of as a standalone spin-\(n/2\) quantum system, yielding a way to convert between permutation-invatiant qubit codes and \(SU(2)\) spin codes.
A single-spin code for the \(SU(2)\) group correcting spherical tensors can be mapped into a PI qubit code with an analogous distance \cite{arxiv:2304.08611}\cite[Thm. 1]{arxiv:2310.17652}.
\end{defterm}
protection: |
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: unentangled_permutation_invariant
physical: qubits
logical: qubits

name: '\(((n,1,2))\) Bravyi-Lee-Li-Yoshida PI code'
introduced: '\cite{arxiv:2405.01332}'

description: |
PI distance-two code on \(n\geq4\) qubits whose degree of entanglement vanishes asymptotically with \(n\) \cite[Appx. D]{arxiv:2405.01332}.
In terms of \hyperref[topic:dicke]{Dicke states}, the codewords are
\begin{align}
\begin{split}
|0_{L}\rangle&=\sqrt{1-\frac{2}{n}}|D_{0}^{n}\rangle+\sqrt{\frac{2}{n}}|D_{n}^{n}\rangle\\
|1_{L}\rangle&=|D_{2}^{n}\rangle~.
\end{split}
\end{align}
relations:
parents:
- code_id: qubit_permutation_invariant
- code_id: movassagh_ouyang
detail: 'The \(((n,1,2))\) PI code is a Movassagh-Ouyang Hamiltonian code constructed from a binary code consisting of all codewords of weight 0, 2, or \(n\) \cite[Appx. D]{arxiv:2405.01332}.'
- code_id: small_distance_quantum
cousins:
- code_id: quantum_concatenated
detail: 'The Bravyi-Lee-Li-Yoshida PI code can be concatenated to yield codes that have higher distance and that admit codewords with vanishing entanglement \cite[Appx. D]{arxiv:2405.01332}.'


# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2024-02-07'
2 changes: 2 additions & 0 deletions codes/quantum/qubits/qubits_into_qubits.yml
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,8 @@ features:
notes:
- 'There is a relation between one-way entanglement distillation protocols and QECCs \cite{arxiv:quant-ph/9604024}.'
- 'See \href{https://github.com/qiskit-community/qiskit-qec}{Qiskit QEC framework} for realizing protocols on IBM machines.'
- 'There exists a distance- and rate-dependent lower bound on the degree of entanglement of a qubit code \cite[Thm. 3i]{arxiv:2405.01332}.'


relations:
parents:
Expand Down
2 changes: 2 additions & 0 deletions codes/quantum/qubits/stabilizer/qubit_stabilizer.yml
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,8 @@ notes:
- 'Tables of bounds and examples of stabilizer codes for various \(n\) and \(k\), based on algorithms developed in Ref. \cite{doi:10.1007/978-3-540-37634-7_13}, are maintained by M. Grassl at this \href{http://codetables.markus-grassl.de/}{website}.'
- 'Stabilizer error-recovery circuits can be simulated efficiently using dedicated software (e.g., STIM \cite{arxiv:2103.02202}).'
- 'There is a correspondence between stabilizer codes and bilocal Clifford entanglement distillation circuits \cite{arxiv:2303.11465}.'
- 'The overlap between any stabilizer codeword and any \(n\)-qubit product state is at most \(2/2^d\) \cite[Thm. 2]{arxiv:2405.01332}.'


relations:
parents:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,7 @@ features:
- 'Markov-chain Monte Carlo \cite{arxiv:1302.2669}.'
- 'Cellular automaton decoders \cite{doi:10.7907/AHMQ-EG82,arxiv:1406.2338,arxiv:1511.05579}; see also \cite{arxiv:1512.04528}.'
- 'Neural network \cite{arxiv:1610.04238,arxiv:1802.06441,arxiv:2208.05758}, reinforcement learning \cite{arxiv:1810.07207,arxiv:2212.11890}, and transformer-based \cite{arxiv:2311.16082} decoders.'
- 'Lightweight low-latency look-up table (LILLIPUT) decoder for small surface codes \cite{arxiv:2108.06569}.'
- 'Decoders can be augmented with a pre-decoder \cite{arxiv:2001.11427,arxiv:2208.04660}, which can allow for some processing to be done inside the cryogenic environment of the quantum system \cite{arxiv:2208.08547}.'
- 'Sliding-window \cite{arxiv:2209.09219,arxiv:2209.08552} and parallel-window \cite{arxiv:2209.09219} parallelizable decoders, designed to overcome the backlog problem, can be combined with many inner decoders, such as MWPM or union-find.'
- 'Modifications of BP:
Expand Down
2 changes: 1 addition & 1 deletion codes/quantum/spins/single_spin/j_gross.yml
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ relations:
- code_id: group_representation
detail: 'Clifford spin codes are group-representation codes with \(G\) being a subgroup of \(SU(2)\) \cite{arxiv:2306.11621}.'
- code_id: qubit_permutation_invariant
detail: 'Clifford codes for spins housing representations of \(SU(2)\) yield permutation-invariant qubit codes with non-trivial distance when the single spin-\(n/2\) is treated as the permutationally invariant subspace of \(n\) qubits via the \hyperref[topic:dicke]{Dicke-state mapping}.
detail: 'Clifford codes for spins housing representations of \(SU(2)\) yield PI qubit codes with non-trivial distance when the single spin-\(n/2\) is treated as the permutationally invariant subspace of \(n\) qubits via the \hyperref[topic:dicke]{Dicke-state mapping}.
The subgroup of gates of a Clifford spin code is implemented transversally via this mapping \cite{arxiv:2304.08611}.'


Expand Down
Loading

0 comments on commit ae6d9ae

Please sign in to comment.