Skip to content

Commit

Permalink
~
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed May 27, 2024
1 parent 4d604a8 commit 94df4e7
Show file tree
Hide file tree
Showing 3 changed files with 10 additions and 8 deletions.
4 changes: 2 additions & 2 deletions codes/quantum/qubits/nonstabilizer/circuit_to_hamiltonian.yml
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,15 @@ features:
encoders:
- 'There exists a circuit of size polynomial in \(n\) whose terms act on at most \(\log (n)+2\) qubits \cite[Thm. 3.3]{arxiv:1811.00277}.'
decoders:
- 'Local detection of Pauli errors can be done using circuits of depth \(\textit{polylog}(n)\) based on exact decoders for the Brown-Fawzi code \cite[Lemma 3.2]{arxiv:1811.00277}.'
- 'Local detection of Pauli errors can be done using circuits of depth \(O(\text{polylog}(n))\) based on exact decoders for the Brown-Fawzi code \cite[Lemma 3.2]{arxiv:1811.00277}.'


relations:
parents:
- code_id: qubits_into_qubits
- code_id: approximate_qecc
- code_id: hamiltonian
detail: 'Circuit-to-Hamiltonian approximate codes form the ground-state space of a non-commuting projector Hamiltonian whose projectors are constant weight, but such that each physical qubit is acted on by order \(O(\text{polylog}(n)\) projectors.'
detail: 'Circuit-to-Hamiltonian approximate codes form the ground-state space of a frustration-free non-commuting projector Hamiltonian whose projectors are constant weight, but such that each physical qubit is acted on by order \(O(\text{polylog}(n))\) projectors.'
cousins:
- code_id: qlwc
detail: 'The circuit-to-Hamiltonian code construction yields approximate codes whose distance and logical-qubit number are both of order \(\Omega(n/\log^5 n)\) \cite[Thm. 3.1]{arxiv:1811.00277}.
Expand Down
7 changes: 5 additions & 2 deletions codes/quantum/qubits/nonstabilizer/movassagh_ouyang.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ relations:
- code_id: qubits_into_qubits
- code_id: hamiltonian
detail: 'Movassagh-Ouyang codes reside in the ground space of a Hamiltonian.
Justesen codes can be used to build a family of \(n\)-qudit Movassagh-Ouyang Hamiltonian codes encoding one logical qubit with linear distance.
Justesen codes can be used to build a family of \(n\)-qudit Movassagh-Ouyang Hamiltonian spin codes encoding one logical qubit with linear distance.
These codes form the ground-state subspace of a frustration-free geometrically local Hamiltonian \cite{arxiv:2012.01453}.'

cousins:
Expand All @@ -35,7 +35,10 @@ relations:
- code_id: bits_into_bits
detail: 'Movassagh-Ouyang codes are constructed from classical binary codes.'
- code_id: justesen
detail: 'Justesen codes can be used to build a family of \(n\)-qudit Movassagh-Ouyang Hamiltonian codes encoding one logical qubit with linear distance.
detail: 'Justesen codes can be used to build a family of \(n\)-qudit Movassagh-Ouyang Hamiltonian spin codes encoding one logical qubit with linear distance.
These codes form the ground-state subspace of a frustration-free geometrically local Hamiltonian \cite{arxiv:2012.01453}.'
- code_id: spins_into_spins
detail: 'Justesen codes can be used to build a family of \(n\)-qudit Movassagh-Ouyang Hamiltonian spin codes encoding one logical qubit with linear distance.
These codes form the ground-state subspace of a frustration-free geometrically local Hamiltonian \cite{arxiv:2012.01453}.'


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,14 @@
#######################################################

code_id: vbs
physical: qudits
logical: qudits
physical: spins

name: 'Valence-bond-solid (VBS) code'
short_name: 'VBS'
introduced: '\cite{arxiv:1910.00038,arxiv:2105.14777}'

description: |
An \(n\)-qubit approximate \(q\)-dimensional qudit code family whose codespace is described in terms of \(SU(q)\) valence-bond-solid (VBS) \cite{doi:10.1007/978-3-662-06390-3_18} matrix product states with various boundary conditions.
An \(n\)-qubit approximate \(q\)-dimensional spin code family whose codespace is described in terms of \(SU(q)\) valence-bond-solid (VBS) \cite{doi:10.1007/978-3-662-06390-3_18} matrix product states with various boundary conditions.
The codes become exact when either \(n\) or \(q\) go to infinity.
features:
Expand All @@ -21,7 +20,7 @@ features:

relations:
parents:
- code_id: qudits_into_qudits
- code_id: spins_into_spins
- code_id: hamiltonian
detail: 'VBS codewords are eigenstates of the frustration-free VBS Hamiltonian \cite{arxiv:1910.00038,arxiv:2105.14777}.'
- code_id: approximate_qecc
Expand Down

0 comments on commit 94df4e7

Please sign in to comment.