Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Aug 24, 2024
2 parents d47d6fc + 27724bd commit 6f0bb0a
Show file tree
Hide file tree
Showing 10 changed files with 108 additions and 20 deletions.
5 changes: 5 additions & 0 deletions code_extra/bib_preset.yml
Original file line number Diff line number Diff line change
Expand Up @@ -265,6 +265,11 @@ HKSstc:
flm: >-
F. Oggier, "Spacetime Coding." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) \href{https://doi.org/10.1201/9781315147901}{DOI}
HKSnetwork:
_ready_formatted:
flm: >-
F. R. Kschischang, "Network Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) \href{https://doi.org/10.1201/9781315147901}{DOI}
HKSfountain:
_ready_formatted:
flm: >-
Expand Down
4 changes: 3 additions & 1 deletion codes/classical/matrices/rank-metric/gabidulin.yml
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,12 @@ physical: matrices
logical: matrices

name: 'Gabidulin code'
introduced: '\cite{manual:{E. M. Gabidulin, \textit{Theory of Codes with Maximum Rank Distance}, Problemy Peredachi Informacii, Volume 21, Issue 1, \emph{3–16} (1985)},doi:10.1109/18.75248}'
introduced: '\cite{manual:{E. M. Gabidulin, \textit{Theory of Codes with Maximum Rank Distance}, Problemy Peredachi Informacii, Volume 21, Issue 1, \emph{3–16} (1985)},doi:10.1016/0097-3165(78)90015-8,doi:10.1109/18.75248}'

alternative_names:
- 'Vector rank-metric code'
- 'Delsarte-Gabidulin code'
#HKS Ch 29

description: |
A linear code over \(GF(q^N)\) that corrects errors over rank metric instead of the traditional Hamming distance. Every element \(GF(q^N)\) can be written as an \(N\)-dimensional vector with coefficients in \(GF(q)\), and the rank of a set of elements is rank of the matrix formed by their coefficients.
Expand Down
43 changes: 43 additions & 0 deletions codes/classical/q-ary_digits/projective/subspace.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: subspace
physical: q-ary_digits
logical: q-ary_digits

name: 'Subspace code'
introduced: \cite{doi:10.1109/TIT.2008.926449}

description: |
A code that is a set of subspaces of a projective space \(PG(n-1,q)\).
protection: |
Subspace codes are quantified with respect to the subspace distance \cite{doi:10.1109/TIT.2008.926449} or injection distance \cite{arxiv:0805.3824}.'
Generalizations of various bounds for ordinary \(q\)-ary codes have been developed for subspace codes; see \cite{preset:HKSnetwork}.
features:
decoders:
- 'List decoding up to the Singleton bound \cite{doi:10.1145/2488608.2488715}.'

realizations:
- 'Packet-based transmission over networks \cite{preset:HKSnetwork}.'

relations:
parents:
- code_id: projective
cousins:
- code_id: gabidulin
detail: 'Gabidulin codes can be used to construct asymptotically good subspace codes \cite{doi:10.1109/TIT.2003.809567,doi:10.1109/TIT.2008.926449}.'
- code_id: rank_metric
detail: 'Subspace and rank-metric codes are closely related \cite{doi:10.1109/TIT.2008.928291}.'


# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2024-08-23'
4 changes: 3 additions & 1 deletion codes/quantum/qubits/qubits_into_qubits.yml
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,9 @@ features:
See Refs. \cite{arxiv:quant-ph/0304125,arxiv:0811.0898,arxiv:1310.6813,preset:GottesmanBook} for generators, relations, and normal form.
The group cannot be expressed as a semidirect product of the Pauli and symplectic groups \cite{arxiv:2406.09951}.
Restricting the group to real-valued elements yields the \textit{real Clifford group}.
Single-qubit Clifford gates, modulo phases, realize the \(2O\) binary octahedral subgroup of \(SU(2)\).
Single-qubit Clifford gates, together with Paulis, realize a group with \(192\) elements.
Modding out phases yields the \(48\)-element \(2O\) binary octahedral subgroup of \(SU(2)\).
Further modding out the Pauli group, which corresponds to the quaternion group \(Q\), yields the permutation group \(S_3\), which consists of permutations of the three non-identity single-qubit Pauli matrices.
\end{defterm}
- 'Computing using Clifford gates only can be efficiently simulated on a classical computer, according to the \textit{Gottesman-Knill theorem} \cite{arxiv:quant-ph/9807006,manual:{E. Knill, private communication, ca. 1998.}}.
Universal quantum computing can be achieved using Clifford gates and a single type of non-Clifford gate, such as the \(T\) gate \cite{arxiv:quant-ph/9503016}.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ protection: |
features:
transversal_gates:
- 'Transversal \(SH\) gates \cite[Sec. 8.2]{arxiv:quant-ph/9705052}.'
- 'Transversal \(SH\) and \(HS\) gates \cite[Sec. 8.2]{arxiv:quant-ph/9705052}.'
- 'The three-block transversal gate mapping each physical \(X \to XYZ\) and each \(Z \to ZXY\) implements a logical gate \cite{arxiv:quant-ph/9702029}\cite[Exam. 2]{arxiv:quant-ph/9703048}.'

fault_tolerance:
Expand Down
2 changes: 2 additions & 0 deletions codes/quantum/qubits/stabilizer/qubit_css.yml
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@ features:
- 'Entanglement purification \cite{arxiv:quant-ph/0210069}.'
- 'Reinforcement learning encoding circuits \cite{arxiv:2402.17761}.'
- 'ZX calculus provides a canonical form of an encoding circuit \cite{arxiv:2406.12083}.'
- 'Automated fault-tolerant encoding circuit synthesis \cite{arxiv:2408.11894}.'

# Realizing transversal gates outside of the Clifford group requires certain higher-order (i.e., non-quadratic) constraints to be satisfied on the code \cite{arxiv:1209.2426}.

Expand All @@ -139,6 +140,7 @@ features:
- 'Homomorphic gadgets fault-tolerant measurement unify Steane and Shor error correction \cite{arxiv:2211.03625}.'
- 'A fault-tolerant error-correction protocol using \(O(d\log d)\) syndrome measurements can be applied to any CSS code with distance \(d \geq \Omega(n^{\alpha})\) for any \(\alpha > 0\) \cite{arxiv:2002.05180}.'
- 'Fault-tolerant measurement-free scheme for low-distance CSS codes \cite{arxiv:2307.13296}.'
- 'Automated fault-tolerant encoding circuit synthesis \cite{arxiv:2408.11894}.'
code_capacity_threshold:
- 'Bounds on code capacity thresholds for various noise models exist in terms of stabilizer generator weights \cite{arxiv:1208.2317,arxiv:1412.6172}.'
decoders:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ features:
ML decoding \cite{arxiv:quant-ph/0110143} is \(\#P\)-hard in general for the surface code \cite{arxiv:2309.10331}.'
- 'Union-find decoder \cite{arxiv:1709.06218} uses the \textit{union-find data structure} \cite{doi:10.1145/364099.364331,doi:10.1137/0202024,doi:10.1145/62.2160}, solving the MPE decoding problem exactly for low-weight errors under depolarizing noise. A subsequent modification utilizes the continuous signal obtained in the physical implementation of the stabilizer measurement (as opposed to discretizing the signal into a syndrome bit) \cite{arxiv:2107.13589}. Belief union find is a combination of belief-propagation and union-find \cite{arxiv:2203.04948}.
Strictly local (as opposed to partially local) union find \cite{arxiv:2305.18534} has a worst-case runtime of \hyperref[topic:asymptotics]{order} \(O(d^3)\) in the distance \(d\).'
- 'Modified MWPM decoders: pipeline MWPM (accounting for correlations between events) \cite{arxiv:1310.0863,arxiv:2205.09828}; modification tailored to asymmetric noise \cite{arxiv:1812.01505}; parity blossom MWPM and fusion blossom MWPM \cite{arxiv:2305.08307}, a modification utilizing the continuous signal obtained in the physical implementation of the stabilizer measurement (as opposed to discretizing the signal into a syndrome bit) \cite{arxiv:2107.13589}; belief perfect matching (a combination of belief-propagation and MWPM) \cite{arxiv:2203.04948}; spanning tree matching (STM) and rapid-fire (RFire) decoders \cite{arxiv:2405.01151}; ordered decoding based on MWPM \cite{arxiv:2408.01393}.
- 'Modified MWPM decoders: pipeline MWPM (accounting for correlations between events) \cite{arxiv:1310.0863,arxiv:2205.09828}; modification tailored to asymmetric noise \cite{arxiv:1812.01505}; parity blossom MWPM and fusion blossom MWPM \cite{arxiv:2305.08307}, a modification utilizing the continuous signal obtained in the physical implementation of the stabilizer measurement (as opposed to discretizing the signal into a syndrome bit) \cite{arxiv:2107.13589}; belief perfect matching (a combination of belief-propagation and MWPM) \cite{arxiv:2203.04948}; spanning tree matching (STM) and rapid-fire (RFire) decoders \cite{arxiv:2405.01151}; ordered decoding based on MWPM \cite{arxiv:2408.01393}; Libra decoder \cite{arxiv:2408.12135}.
Combinining, or \textit{harmonizing}, various decoders can improve performance \cite{arxiv:2401.12434}.'
- 'Renormalization group (RG) \cite{arxiv:0911.0581,arxiv:1304.6100,arxiv:1411.3028}; see Ref. \cite{arxiv:1310.2393} for the planar surface code.'
- 'Linear-time ML erasure decoder \cite{arxiv:1703.01517}.'
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,6 @@ logical: galois
name: 'Quantum Goppa code'
introduced: '\cite{arxiv:quant-ph/0006061,arxiv:quant-ph/0501074,doi:10.1007/s11128-006-0047-9}'

alternative_names:
- 'Quantum AG code'

description: |
A Galois-qudit CSS code constructed using two Goppa codes.
Expand All @@ -31,29 +28,20 @@ description: |
protection: 'Protects against weight \(t\) errors where \( 0 < t \leq \lfloor \frac{d^*-g-1}{2} \rfloor \) where \( d^* = \text{deg} G + 2 -2g \) and \(g\) is the genus of the function field and \(d \geq n - \lfloor \frac{deg G}{2} \rfloor\). Such codes can exceed the \hyperref[topic:quantum-gv-bound]{quantum GV bound} \cite{doi:10.1007/s11128-006-0047-9}.'

features:
rate: 'Quantum Goppa codes \cite{arxiv:quant-ph/0006061} and other quantum codes constructed from AG codes \cite{arxiv:quant-ph/0107129} can be asymptotically good. There exist three such families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

magic_scaling_exponent: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum Goppa codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'

rate: 'Quantum Goppa codes \cite{arxiv:quant-ph/0006061} can be asymptotically good.'

encoders:
- 'Encoding defined in Ref. \cite{arxiv:quant-ph/0107129} uses a technique from Ref. \cite{arxiv:quant-ph/0005008} to encode quantum stabilizer codes.'

transversal_gates:
- 'There exist three asymptotically good code families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

decoders:
- 'Farran algorithm \cite{arxiv:math/9910151}.'

relations:
parents:
- code_id: galois_css
detail: 'Goppa codes can be realized in the CSS code construction \cite{doi:10.1007/s11128-006-0047-9}.'
- code_id: quantum_ag
cousins:
- code_id: goppa
detail: 'Classical Goppa codes over various algebraic curves are used to construct quantum Goppa codes.'
- code_id: quantum_triorthogonal
detail: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum Goppa codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'


# Begin Entry Meta Information
Expand Down
46 changes: 46 additions & 0 deletions codes/quantum/qudits_galois/stabilizer/evaluation/quantum_ag.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: quantum_ag
physical: galois
logical: galois

name: 'Quantum AG code'
introduced: '\cite{arxiv:quant-ph/0107129}'

description: |
A Galois-qudit CSS code constructed using two linear AG codes.
features:
rate: 'Quantum AG codes \cite{arxiv:quant-ph/0107129} can be asymptotically good. There exist three such families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

magic_scaling_exponent: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum AG codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'


encoders:
- 'Encoding defined in Ref. \cite{arxiv:quant-ph/0107129} uses a technique from Ref. \cite{arxiv:quant-ph/0005008} to encode quantum stabilizer codes.'

transversal_gates:
- 'There exist three asymptotically good code families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

relations:
parents:
- code_id: galois_css
detail: 'Quantum AG codes can be realized in the CSS code construction \cite{doi:10.1007/s11128-006-0047-9}.'
cousins:
- code_id: ag
- code_id: quantum_triorthogonal
detail: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum AG codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'
- code_id: shimura
detail: 'The AG codes used in an asymptotically good construction of quantum AG codes with non-Clifford transversal gates \cite{arxiv:2408.09254} are those of the TVZ codes.'


# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2024-08-23'
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,8 @@ relations:
- code_id: generalized_reed_solomon
- code_id: quantum_mds
detail: 'Some Galois-qudit GRS codes are quantum MDS \cite{arxiv:1311.3009}.'
- code_id: galois_css
detail: 'Galois-qudit GRS codes can be constructed via the CSS construction or the Hermitian construction.'
- code_id: quantum_ag
detail: 'Galois-qudit GRS codes can be constructed via the CSS construction or the Hermitian construction from GRS codes, which are evaluation AG codes.'
- code_id: stabilizer_over_gfqsq
detail: 'Galois-qudit GRS codes can be constructed via the CSS construction or the Hermitian construction.'
- code_id: quantum_concatenated
Expand Down

0 comments on commit 6f0bb0a

Please sign in to comment.