Skip to content

Commit

Permalink
kls
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Dec 11, 2024
1 parent 891b96f commit 6e31ae4
Show file tree
Hide file tree
Showing 3 changed files with 48 additions and 1 deletion.
41 changes: 41 additions & 0 deletions codes/quantum/qubits/small_distance/kls.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: kls
physical: qubits
logical: qubits

name: '\([[m 2^m / (m+1), 2^m / (m+1)]]\) Khesin-Lu-Shor code'
short_name: '\([[m 2^m / (m+1), 2^m / (m+1)]]\)'
introduced: '\cite{arxiv:2411.14448}'

description: |
A family of \([[m 2^m / (m+1), 2^m / (m+1)]]\) qubit CSS codes derived from the Hamming code.
Their \hyperref[topic:encoder-respecting]{encoder-respecting form} is the graph of a hypercube in \(m = 2^r - 1\) dimensions, and input nodes in the graph are codewords of the \([2^r-1,2^r-r-1,3]\) Hamming code \cite{arxiv:2411.14448}.
protection: 'The code distance is bounded above and conjectured to be \(m\) \cite{arxiv:2411.14448}.'


relations:
parents:
- code_id: qubit_css
cousins:
- code_id: hamming
detail: 'The \hyperref[topic:encoder-respecting]{encoder-respecting form} of the \([[m 2^m / (m+1), 2^m / (m+1)]]\) Khesin-Lu-Shor code is the graph of a hypercube in \(m = 2^r - 1\) dimensions, and input nodes in the graph are codewords of the \([2^r-1,2^r-r-1,3]\) Hamming code \cite{arxiv:2411.14448}.'
- code_id: hypercube
detail: 'The \hyperref[topic:encoder-respecting]{encoder-respecting form} of the \([[m 2^m / (m+1), 2^m / (m+1)]]\) Khesin-Lu-Shor code is the graph of a hypercube in \(m = 2^r - 1\) dimensions, and input nodes in the graph are codewords of the \([2^r-1,2^r-r-1,3]\) Hamming code \cite{arxiv:2411.14448}.'
- code_id: steane
detail: 'The \hyperref[topic:encoder-respecting]{encoder-respecting form} of both the Steane and Khesin-Lu-Shor codes is the graph of a hypercube \cite{arxiv:2411.14448}.'



# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2024-12-11'
- user_id: AndreyBorisKhesin
date: '2024-12-11'
3 changes: 2 additions & 1 deletion codes/quantum/qubits/small_distance/small/6/stab_6_2_2.yml
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,8 @@ features:

relations:
parents:
- code_id: qubit_css
- code_id: kls
detail: 'The Khesin-Lu-Shor code for \(r=2\) and \(m=2^r - 1 = 3\) is the \([[6,2,2]]\) \(C_6\) code.'
- code_id: small_distance_quantum
cousins:
- code_id: qubit_concatenated
Expand Down
5 changes: 5 additions & 0 deletions users/users_db.yml
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,11 @@
# Code Contributors -- leave out 'zooteam:'.

#

- user_id: AndreyBorisKhesin
name: 'Andrey Boris Khesin'
githubusername: AndreyBorisKhesin

- user_id: DavidTStephen
name: 'David T. Stephen'
gscholaruser: KBuD0aMAAAAJ
Expand Down

0 comments on commit 6e31ae4

Please sign in to comment.