Skip to content

Commit

Permalink
ea mds, two mode binomial
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Nov 17, 2023
1 parent a40f06e commit 4899b0c
Show file tree
Hide file tree
Showing 4 changed files with 73 additions and 3 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: two-mode_binomial
physical: oscillators
logical: qudits

name: 'Two-mode binomial code'
introduced: '\cite{doi:doi:10.1103/PhysRevA.56.1114}'

description: |
Two-mode constant-energy CLY code whose coefficients are square-roots of binomial coefficients.
The simplest two-mode \(S=1\) code is an analogue of the "0-2-4" single-mode binomial code, with codewords
\begin{align}
\begin{split}
|\overline{0}\rangle&=\frac{1}{\sqrt{2}}\left(|40\rangle+|04\rangle\right)\\
|\overline{1}\rangle&=|22\rangle~.
\end{split}
\end{align}
The general codewords are
\begin{align}
|\overline{\mu}\rangle=\frac{1}{2^{J}}\sum_{m=0}^{2J}\left(-1\right)^{\mu m}\sqrt{{2J \choose m}}\left|2J-(S+1)m,(S+1)m\right\rangle~,
\end{align}
with spacing \(S\) and dephasing error parameter \(N\) such that \(J = \frac{1}{2}(N+1)(S+1)\) \cite{arXiv:1602.00008}.
The \(S=0\) version can be obtained by applying a \(50:50\) beamsplitter to the highest-weight Fock state \(|2J,0\rangle\) \cite{arxiv:1512.07605}.
relations:
parents:
- code_id: chuang-leung-yamamoto
cousins:
- code_id: binomial


# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2023-11-17'
2 changes: 0 additions & 2 deletions codes/quantum/oscillators/fock_state/rotation/binomial.yml
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,6 @@ relations:
detail: 'For a fixed \(S\), binomial codes with \(N \to \infty\) coincide with cat codes as \(\alpha \to \infty\) \cite{arXiv:1602.00008}.'
- code_id: number_phase
detail: 'In the limit as \(N,S \to \infty\), phase measurement in the binomial code has vanishing variance, just like in a number-phase code \cite{arxiv:1901.08071}.'
- code_id: chuang-leung-yamamoto
detail: 'Two-mode version of binomial codes correspond to two-mode "0-2-4" CLY codes (see Sec. IV.A of Ref. \cite{arXiv:1602.00008}).'


# Begin Entry Meta Information
Expand Down
28 changes: 28 additions & 0 deletions codes/quantum/properties/block/ea_mds.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: ea_mds


name: 'EQ MDS code'
introduced: '\cite{arxiv:quant-ph/9610043}'

description: |
EQ code that satisfies the generalization of the quantum Singleton bound to EQ codes \cite[Thm. 6]{arxiv:2010.07902}.
relations:
parents:
- code_id: eaqecc
cousins:
- code_id: quantum_mds


# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2023-11-17'
2 changes: 1 addition & 1 deletion codes/quantum/properties/block/quantum_mds.yml
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ description: |
2(d-1) \leq n-k
\end{align}
becomes an equality.
Such codes are pure \cite{arxiv:1907.07733}.
protection: 'Given \(n\) and \(k\), MDS codes have the highest distance possible of all codes and so have the best possible error correction properties.'

Expand Down

0 comments on commit 4899b0c

Please sign in to comment.