Skip to content

Commit

Permalink
~
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Jul 25, 2024
1 parent e8255f7 commit 45c94c4
Show file tree
Hide file tree
Showing 4 changed files with 7 additions and 10 deletions.
4 changes: 2 additions & 2 deletions codes/classical/bits/covering/nearly_perfect.yml
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,10 @@ physical: bits
logical: bits

name: 'Nearly perfect code'
introduced: '\cite{doi:10.1016/0012-365X(72)90025-8,manual:{N. V. Semakov, V. A. Zinov''ev, G. V. Zaitsev, “Uniformly Packed Codes”, Probl. Peredachi Inf., 7:1 (1971), 38–50; Problems Inform. Transmission, 7:1 (1971), 30–39}}'
introduced: '\cite{doi:10.1109/TIT.1962.1057714,doi:10.1016/0012-365X(72)90025-8,manual:{N. V. Semakov, V. A. Zinov''ev, G. V. Zaitsev, “Uniformly Packed Codes”, Probl. Peredachi Inf., 7:1 (1971), 38–50; Problems Inform. Transmission, 7:1 (1971), 30–39}}'

description: |
An \((n,K,2t+1)\) binary code is nearly perfect if parameters \(n\), \(K\), and \(t\) are such that the Johnson bound
An \((n,K,2t+1)\) binary code is nearly perfect if parameters \(n\), \(K\), and \(t\) are such that the Johnson bound \cite{doi:10.1109/TIT.1962.1057714},
\begin{align}
\frac{{n \choose t}\left(\frac{n-t}{t+1}-\left\lfloor \frac{n-t}{t+1}\right\rfloor \right)}{\left\lfloor \frac{n}{t+1}\right\rfloor }+\sum_{j=0}^{t}{n \choose j}\leq2^{n}/K
\end{align}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -85,8 +85,8 @@ protection: |
\end{defterm}
\subsection{Bounds on code parameters}
Bounds on the parameters of an \((n,K,d)_q\) code include the Hamming a.k.a. sphere-packing bound, Singleton bound, Gilbert-Varshamov (GV) bound, Griesmer bound, Plotkin bound, and various linear programming (LP) bounds; see \cite{preset:HKSbasics}.
A code whose parameters attain the Hamming bound (Singleton bound, Griesmer bound, Delsarte LP bound) is called a perfect code (an MDS code, a Griesmer code, an \hyperref[code:univ_opt_q-ary]{LP universally optimal code}).
Bounds on the parameters of an \((n,K,d)_q\) code include the Hamming a.k.a. sphere-packing bound, Singleton bound, Gilbert-Varshamov (GV) bound, Griesmer bound, Plotkin bound, Johnson bound, and various linear programming (LP) bounds; see \cite{preset:HKSbasics}.
A code whose parameters attain the Hamming bound (Singleton bound, Griesmer bound, Johnson bound, Delsarte LP bound) is called a perfect code (an MDS code, a Griesmer code, a nearly perfect code, an \hyperref[code:univ_opt_q-ary]{LP universally optimal code}).
\begin{defterm}{Gilbert-Varshamov (GV) bound}
\label{topic:gv-bound}
Expand All @@ -102,6 +102,7 @@ protection: |
where \(h_q\) is the \(q\)-ary entropy function,
\begin{align}
h_{q}(\delta)=-\delta\log_{q}\frac{\delta}{q-1}-(1-\delta)\log_{q}(1-\delta)~.
\end{align}
\end{defterm}
features:
Expand Down
4 changes: 1 addition & 3 deletions codes/quantum/properties/block/quantum_mds.yml
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,7 @@ short_name: 'Quantum MDS'
introduced: '\cite{arxiv:quant-ph/9604034,arxiv:quant-ph/9702031,arxiv:quant-ph/9703048}'

description: |
An \(((n,K,d))\) code constructed out of \(q\)-dimensional qubits or Galois qudits is an MDS code if parameters \(n\), \(k\), \(d\), and \(q\) are such that the quantum Singleton bound is satisfied.
In other words, the quantum Singleton bound \cite{arxiv:quant-ph/9604034,arxiv:quant-ph/9702031,arxiv:quant-ph/9703048}
An \(((n,K,d))\) code constructed out of \(q\)-dimensional qubits or Galois qudits is an MDS code if parameters \(n\), \(k\), \(d\), and \(q\) are such that the quantum Singleton bound \cite{arxiv:quant-ph/9604034,arxiv:quant-ph/9702031,arxiv:quant-ph/9703048},
\begin{align}
K \leq q^{n-2(d-1)}
\end{align}
Expand Down
4 changes: 1 addition & 3 deletions codes/quantum/properties/block/quantum_perfect.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,7 @@ name: 'Perfect quantum code'
#introduced: ''

description: |
A \hyperref[topic:degeneracy]{non-degenerate} code constructed out of \(q\)-dimensional qudits and having parameters \(((n,K,2t+1))\) is perfect if \(n\), \(K\), \(t\), and \(q\) are such that the quantum Hamming bound is satisfied,
In other words, the quantum Hamming bound \cite{arxiv:quant-ph/9602022}
A \hyperref[topic:degeneracy]{non-degenerate} code constructed out of \(q\)-dimensional qudits and having parameters \(((n,K,2t+1))\) is perfect if \(n\), \(K\), \(t\), and \(q\) are such that the quantum Hamming bound \cite{arxiv:quant-ph/9602022},
\begin{align}
\sum_{j=0}^{t}(q^2-1)^{j}{n \choose j}\leq q^{n}/K
\end{align}
Expand Down

0 comments on commit 45c94c4

Please sign in to comment.