Skip to content

Commit

Permalink
[48,24,12]
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Mar 15, 2024
1 parent af6a945 commit 1c4edfe
Show file tree
Hide file tree
Showing 7 changed files with 58 additions and 7 deletions.
4 changes: 2 additions & 2 deletions codes/classical/bits/cyclic/golay.yml
Original file line number Diff line number Diff line change
Expand Up @@ -67,9 +67,9 @@ relations:
- code_id: nearly_perfect
detail: 'The extended Golay code is nearly perfect.'
- code_id: self_dual
detail: 'The extended Golay code is self-dual.'
detail: 'The extended Golay code is the unique code at its parameters and happens to be self-dual \cite[Remark 4.3.11]{preset:HPRainsSloane}.'
- code_id: group
detail: 'The extended Golay code is a group-algebra code for various groups \cite{doi:10.1109/TIT.2008.928260,doi:10.1007/s10623-017-0440-7,doi:10.1016/0097-3165(90)90069-9}\cite[Ex. 16.5.1]{preset:HKSalgebra}.'
detail: 'The extended Golay code is a group-algebra code for various groups \cite{doi:10.1109/TIT.2008.928260,doi:10.1007/s10623-017-0440-7,doi:10.1016/0097-3165(90)90069-9}; see \cite[Ex. 16.5.1]{preset:HKSalgebra}.'
- code_id: univ_opt_q-ary
detail: 'The Golay code and several of its extended, shortened, and punctured versions are LP universally optimal codes \cite{arxiv:1212.1913}.'

Expand Down
34 changes: 34 additions & 0 deletions codes/classical/bits/cyclic/self_dual_48_24_12.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: self_dual_48_24_12
physical: bits
logical: bits

name: '\([48,24,12]\) self-dual code'

description: |
An extended quadratic-residue code that is known to be the only self-dual doubly-even code at its parameters \cite{doi:10.1109/TIT.2002.806146}.
The code's automorphism group is \(PSL_2(47)\) \cite[Remark 4.3.11]{preset:HPRainsSloane}.
relations:
parents:
- code_id: binary_quad_residue
- code_id: self_dual
detail: 'The \([48,24,12]\) self-dual code is the only self-dual doubly-even code at its parameters \cite{doi:10.1109/TIT.2002.806146}.'
- code_id: divisible
detail: 'The \([48,24,12]\) self-dual code is the only self-dual doubly-even code at its parameters \cite{doi:10.1109/TIT.2002.806146}.'
cousins:
- code_id: combinatorial_design
detail: 'Fixed-weight codewords of extremal self-dual doubly-even codes whose length divides 24 form a combinatorial 5-design \cite{doi:10.1016/S0021-9800(69)80115-8}.'


# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2024-03-15'
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ alternative_names:

description: |
A classical code \(C\) of length \(n\) over an alphabet \(R\) is \(\alpha\)-constacyclic (or \(\alpha\)-twisted) if, for each string \(c_1 c_2 \cdots c_n\in C\), the string \(\alpha c_n, c_1, \cdots, c_{n-1} \in C\).
A \(-1\)-constacyclic code is called \textit{negacyclic}.
relations:
Expand Down
7 changes: 6 additions & 1 deletion codes/classical/q-ary_digits/dual/self_dual.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,11 @@ protection: |
except for \(n = 22\) modulo four for the second case, where the bound is increased by four \cite{doi:10.1109/18.651000}.
A self-dual code saturating the above inequality is called \textit{extremal}.
Fixed-weight codewords of extremal self-dual doubly-even binary codes whose length divides 24 form a combinatorial 5-design \cite{doi:10.1016/S0021-9800(69)80115-8}.
The extended Golay code and the \([48,24,12]\) self-dual code are two such codes.
It is not yet known whether a \([72,36,16]\) self-dual code exists; see \cite{doi:10.1109/TIT.1973.1054975,doi:10.1090/conm/634/12692}\cite[Remark 4.3.11]{preset:HPRainsSloane}.
For ternary self-dual codes, see \cite[Remark 4.3.14]{preset:HPRainsSloane}\cite{doi:10.1016/j.ffa.2005.05.012}.
notes:
- See books \cite{doi:10.1007/3-540-30731-1,doi:10.1017/CBO9780511807077} for more on self-dual codes.
Expand All @@ -46,7 +51,7 @@ relations:
In addition, quaternary linear codes are Hermitian self-orthogonal (self-dual) iff they are trace-Hermitian self-orthogonal (self-dual) additive \cite[Thm. 27.4.1]{preset:HKSquantum} (\cite[Thm. 9.10.3]{doi:10.1017/CBO9780511807077}).'
cousins:
- code_id: divisible
detail: 'Binary self-dual codes are singly-even and binary self-orthogonal codes that are not doubly-even are singly-even \cite[Def. 4.1.6]{preset:HKSselfdual}.
detail: 'Binary self-dual codes are singly-even, and binary self-orthogonal codes that are not doubly-even are singly-even \cite[Def. 4.1.6]{preset:HKSselfdual}.
The minimum distance of doubly-even binary self-dual codes asymptotically satisfies \(d\leq0.1664n+o(n)\) \cite{doi:10.1109/18.605587}.'


Expand Down
11 changes: 10 additions & 1 deletion codes/quantum/groups/group_quantum.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,16 @@ logical: groups

name: 'Group-based quantum code'

description: 'Encodes a \textit{logical} Hilbert space, finite- or infinite-dimensional, into a \textit{physical} Hilbert space of \(\ell^2\)-normalizable functions on a second-countable unimodular group. For \(K\)-dimensional logical subspace and for groups \(G^{n}\), can be denoted as \(((n,K))_G\). When the logical subspace is the Hilbert space of \(\ell^2\)-normalizable functions on \(G^{ k}\), can be denoted as \([[n,k]]_G\). Ideal codewords may not be normalizable, depending on whether \(G\) is continuous and/or noncompact, so approximate versions have to be constructed in practice.'
description: 'Encodes a \textit{logical} Hilbert space, finite- or infinite-dimensional, into a \textit{physical} Hilbert space of \(\ell^2\)-normalizable functions on a second-countable unimodular group \(G\), i.e., a \(G\)\textit{-valued qudit}.
For \(K\)-dimensional logical subspace and for block codes defined on groups \(G^{n}\), can be denoted as \(((n,K))_G\).
When the logical subspace is the Hilbert space of \(\ell^2\)-normalizable functions on \(G^{ k}\), can be denoted as \([[n,k]]_G\).
Ideal codewords may not be normalizable, depending on whether \(G\) is continuous and/or noncompact, so approximate versions have to be constructed in practice.'


features:
general_gates:
- 'Various gates for a single \(G\)-valued qudit are described in \cite{arXiv:1911.00099,arxiv:2208.12309}.'


relations:
parents:
Expand Down
6 changes: 3 additions & 3 deletions codes/quantum/properties/block/quantum_mds.yml
Original file line number Diff line number Diff line change
Expand Up @@ -44,11 +44,11 @@ relations:
- code_id: stabilizer_over_gfqsq
detail: 'Many MDS codes are constructed from Hermitian self-orthogonal codes over \(GF(q^2)\) using the Hermitian construction \cite{arxiv:quant-ph/0312164,arxiv:0906.2509,arxiv:1507.08355,arxiv:1803.07927}, in particular from cyclic \cite{doi:10.1109/TIT.2011.2159039}, constacyclic \cite{doi:10.1109/TIT.2014.2308180,doi:10.1109/TIT.2015.2388576,arxiv:1803.07927} and negacyclic \cite{doi:10.1109/TIT.2012.2220519} codes.'
- code_id: constacyclic
detail: 'Many MDS codes are constructed from Hermitian self-orthogonal codes over \(GF(q^2)\) using the Hermitian construction from constacyclic codes \cite{doi:10.1109/TIT.2014.2308180,doi:10.1109/TIT.2015.2388576,arxiv:1803.07927}.'
detail: 'Many MDS codes are constructed from Hermitian self-orthogonal codes over \(GF(q^2)\) using the Hermitian construction \cite{arxiv:quant-ph/0312164,arxiv:0906.2509,arxiv:1507.08355,arxiv:1803.07927}, in particular from cyclic \cite{doi:10.1109/TIT.2011.2159039}, constacyclic \cite{doi:10.1109/TIT.2014.2308180,doi:10.1109/TIT.2015.2388576,arxiv:1803.07927}, and negacyclic \cite{doi:10.1109/TIT.2012.2220519} codes.'
- code_id: generalized_reed_solomon
detail: 'Some MDS codes are constructed from cyclic and constacyclic codes \cite{arxiv:1502.05267} which are GRS codes \cite{doi:10.1007/s10623-022-01174-5,doi:10.1007/s10623-023-01294-6}.'
- code_id: cyclic
detail: 'Many MDS codes are constructed from Hermitian self-orthogonal codes over \(GF(q^2)\) using the Hermitian construction \cite{arxiv:quant-ph/0312164,arxiv:0906.2509,arxiv:1507.08355,arxiv:1803.07927}, in particular from cyclic codes \cite{doi:10.1109/TIT.2011.2159039}.'
# - code_id: cyclic
# detail: 'Many MDS codes are constructed from Hermitian self-orthogonal codes over \(GF(q^2)\) using the Hermitian construction \cite{arxiv:quant-ph/0312164,arxiv:0906.2509,arxiv:1507.08355,arxiv:1803.07927}, in particular from cyclic codes \cite{doi:10.1109/TIT.2011.2159039}.'


# Begin Entry Meta Information
Expand Down
2 changes: 2 additions & 0 deletions codes/quantum/qudits_galois/stabilizer/css/galois_css.yml
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@ description: |
|\gamma + C_Z^\perp \rangle = \frac{1}{\sqrt{|C_Z^\perp|}} \sum_{\eta \in C_Z^\perp} |\gamma + \eta\rangle.
\end{align}
Galois-qudit CSS codes can also be understood in terms graphs via the \textit{reflexive stabilizer} framework, which also allows one to define a code for a given set of Pauli errors \cite{arxiv:2110.08414}.
protection: 'Detects errors on \(d-1\) qubits, corrects errors on \(\left\lfloor (d-1)/2 \right\rfloor\) qubits.'

relations:
Expand Down

0 comments on commit 1c4edfe

Please sign in to comment.