Skip to content

erojask7/Autoencoders-for-Improving-Quality-of-Process-Event-Logs

 
 

Repository files navigation

Multivariate Anomaly Detection for Event Logs

Directory structure:

multivariate-anomaly-detection-for-event-logs
│   README.md
|   requirement.txt
|
|--- data: original dataset
│   │   bpi_2013.csv
|   |   bpi_2012.csv
|   |   small_log.csv
|   |   large_log.csv
|
|--- data_preprocessing
|   |   data_preparation.ipynb
|   |   data_exploration.ipynb
|   |   descriptive-statistics.ipynb
|
|--- utils
|   |   utils.py
|   |   models.py
|
|--- input: preprocessed data
|
|--- experiment
|   |   output
|   |   VAE.ipynb
|   |   AE.ipynb
|   |   LSTMAE.ipynb
|   



Reference

  1. Install requirement
  • Install pytorch: conda install pytorch torchvision -c soumith
  • pip install -r requirements.txt
  1. Run data_preparation.ipynb
  2. Run VAE.ipynb or AE.ipynb or LSTMAE.ipynb

Event log Reconstruction

Directory structure:

event-log-reconstruction
│   README.md
│   requirement.txt
|
|--- data: original dataset
│   │   bpi_2013.csv
|   |   bpi_2012.csv
|   |   small_log.csv
|   |   large_log.csv
|
|--- data_preprocessing
|   |   induce_missing_data.py
|   │   preprocess_variables.py
|   |   real_log_preprocessing.sh
|
|--- utils
|   |   utils.py
|   |   models.py
|
|--- input: preprocessed data
|
|--- experiment
|   |   output
|   |   AE.ipynb
|   |   VAE.ipynb
|   |   LSTMAE.ipynb
|
|-- base_model
|   |   dummy_imputation.ipynb
|   |   statistical_description.ipynb
|


Reference

  1. Install requirement
  • Install pytorch: conda install pytorch torchvision -c soumith
  • Install requirements: pip install -r requirements.txt
  1. For preprocessing:
  • cd data_preprocessing
  • source real_log_preprocessing.sh
  1. For training and evaluating:
  • cd experiment
  • Run AE.ipynb or VAE.ipynb or LSTMAE
  1. For baseline models:
  • cd base_model
  • Run dummy_imputation.ipynb

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.9%
  • Python 2.1%