multivariate-anomaly-detection-for-event-logs
│ README.md
| requirement.txt
|
|--- data: original dataset
│ │ bpi_2013.csv
| | bpi_2012.csv
| | small_log.csv
| | large_log.csv
|
|--- data_preprocessing
| | data_preparation.ipynb
| | data_exploration.ipynb
| | descriptive-statistics.ipynb
|
|--- utils
| | utils.py
| | models.py
|
|--- input: preprocessed data
|
|--- experiment
| | output
| | VAE.ipynb
| | AE.ipynb
| | LSTMAE.ipynb
|
- Install requirement
- Install pytorch:
conda install pytorch torchvision -c soumith
pip install -r requirements.txt
- Run
data_preparation.ipynb
- Run
VAE.ipynb
orAE.ipynb
orLSTMAE.ipynb
event-log-reconstruction
│ README.md
│ requirement.txt
|
|--- data: original dataset
│ │ bpi_2013.csv
| | bpi_2012.csv
| | small_log.csv
| | large_log.csv
|
|--- data_preprocessing
| | induce_missing_data.py
| │ preprocess_variables.py
| | real_log_preprocessing.sh
|
|--- utils
| | utils.py
| | models.py
|
|--- input: preprocessed data
|
|--- experiment
| | output
| | AE.ipynb
| | VAE.ipynb
| | LSTMAE.ipynb
|
|-- base_model
| | dummy_imputation.ipynb
| | statistical_description.ipynb
|
- Install requirement
- Install pytorch:
conda install pytorch torchvision -c soumith
- Install requirements:
pip install -r requirements.txt
- For preprocessing:
cd data_preprocessing
source real_log_preprocessing.sh
- For training and evaluating:
cd experiment
- Run
AE.ipynb
orVAE.ipynb
orLSTMAE
- For baseline models:
cd base_model
- Run
dummy_imputation.ipynb