Skip to content

Implemented Several ML Techniques for Parkinson’s Detection with Speech Signals- Machine Learning Course Project

Notifications You must be signed in to change notification settings

erfunmirzaei/Parkinson-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

parkinson-detection

In this project, several machine learning techniques was implemented on the dataset which contained speech data about parkinson disease. Some distinct methods were used for preprocessing and feature selection, such as LDA, ICA, PCA w/o whitening, Sequential Backward Feature Elimination and Autoencoders. For classification, two main categories of classifiers were used in this project, generative and discriminative. From generative classifiers, Optimal bayes classifier was used in addition to Parzen window or K-Nearest Neighbors for density estimation. In addition, Gaussian Mixture Model was used as alternative density estimation method. SVM, KNN, Logistic Regression, Decision Tree, and MLP were used as instances of discriminative classifiers. Furthermore, bagging and ensemble methods were used as an extra part. Results compared based on different criteria such as accuracy, f1 score, AUC, ROC Curve, and confusion matrix.

About

Implemented Several ML Techniques for Parkinson’s Detection with Speech Signals- Machine Learning Course Project

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published