Skip to content

Commit

Permalink
Add GitHub workflow for benchmarking
Browse files Browse the repository at this point in the history
  • Loading branch information
dafeda committed Dec 8, 2023
1 parent d2fd444 commit e88ac6f
Show file tree
Hide file tree
Showing 3 changed files with 213 additions and 2 deletions.
49 changes: 49 additions & 0 deletions .github/workflows/benchmark.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
name: Benchmark Adaptive Localization
on:
push:
branches:
- benchmark

permissions:
# deployments permission to deploy GitHub pages website
deployments: write
# contents permission to update benchmark contents in gh-pages branch
contents: write

jobs:
benchmark:
name: Run pytest-benchmark benchmark example
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
lfs: true

- uses: actions/setup-python@v4
id: setup_python
with:
python-version: "3.10"
cache: "pip"
cache-dependency-path: |
setup.py
pyproject.toml
- name: Install ert with dev-deps
run: |
pip install ".[dev]"
- name: Run benchmark
run: |
pytest tests/unit_tests/analysis/test_es_update.py::test_and_benchmark_adaptive_localization_with_fields --benchmark-json output.json
- name: Store benchmark result
uses: benchmark-action/github-action-benchmark@v1
with:
name: Python Benchmark with pytest-benchmark
tool: 'pytest'
output-file-path: output.json
github-token: ${{ secrets.GITHUB_TOKEN }}
auto-push: true
4 changes: 3 additions & 1 deletion tests/unit_tests/analysis/test_adaptive_localization.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
import uuid
from argparse import ArgumentParser
from functools import partial
from textwrap import dedent

import numpy as np
Expand All @@ -16,7 +18,7 @@
def run_cli_ES_with_case(poly_config):
config_name = poly_config.split(".")[0]
prior_sample_name = "prior_sample" + "_" + config_name
posterior_sample_name = "posterior_sample" + "_" + config_name
posterior_sample_name = str(uuid.uuid1())
parser = ArgumentParser(prog="test_main")
parsed = ert_parser(
parser,
Expand Down
162 changes: 161 additions & 1 deletion tests/unit_tests/analysis/test_es_update.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import numpy as np
import pytest
import xarray as xr
import xtgeo
from iterative_ensemble_smoother import SIES

from ert import LibresFacade
Expand Down Expand Up @@ -484,7 +485,6 @@ def test_that_surfaces_retain_their_order_when_loaded_and_saved_by_ert(copy_case
(row-major / column-major) when working with surfaces.
"""
rng = np.random.default_rng()
import xtgeo
from scipy.ndimage import gaussian_filter

def sample_prior(nx, ny):
Expand Down Expand Up @@ -608,6 +608,166 @@ def _load_parameters(source_ens, iens_active_index, param_groups):
assert np.trace(np.cov(posterior[prior_name])) < np.trace(np.cov(prior_data))


def test_and_benchmark_adaptive_localization_with_fields(
storage, tmp_path, monkeypatch, benchmark
):
from functools import partial

import gstools as gs
import scipy as sp

from ert.config import Field
from ert.field_utils import Shape

monkeypatch.chdir(tmp_path)

rng = np.random.default_rng(42)

# Number of grid-cells in x and y direction
nx = 40
# Dimensionality of the problem
num_parameters = nx * nx
num_observations = 50
num_ensemble = 25

diagonal = np.ones(min(num_parameters, num_observations))

# Create a tridiagonal matrix (easiest with scipy)
A = sp.sparse.diags(
[diagonal, diagonal, diagonal],
offsets=[-1, 0, 1],
shape=(num_observations, num_parameters),
dtype=float,
).toarray()

# We add some noise that is insignificant compared to the
# actual local structure in the forward model
A = A + rng.standard_normal(size=A.shape) * 0.01

def g(X):
"""Apply the forward model."""
return A @ X

model = gs.Exponential(dim=2, var=2, len_scale=8)

fields = []
seed = gs.random.MasterRNG(20170519)
for _ in range(num_ensemble):
srf = gs.SRF(model, seed=seed())
field = srf.structured([np.arange(nx), np.arange(nx)])
fields.append(field)

X = np.vstack([field.flatten() for field in fields]).T
Y = g(X)

# Create observations: obs = g(x) + N(0, 1)
x_true = np.linspace(-1, 1, num=num_parameters)
observation_noise = rng.standard_normal(size=num_observations) # N(0, 1) noise
observations = g(x_true) + observation_noise

shape = Shape(nx, nx, 1)
grid = xtgeo.create_box_grid(dimension=(shape.nx, shape.ny, shape.nz))
grid.to_file("MY_EGRID.EGRID", "egrid")

resp = GenDataConfig(name="RESPONSE")
obs = xr.Dataset(
{
"observations": (
["report_step", "index"],
observations.reshape((1, num_observations)),
),
"std": (
["report_step", "index"],
observation_noise.reshape(1, num_observations),
),
},
coords={"report_step": [0], "index": np.arange(len(observations))},
attrs={"response": "RESPONSE"},
)

param_group = "PARAM_FIELD"
update_config = UpdateConfiguration(
update_steps=[
UpdateStep(
name="ALL_ACTIVE",
observations=["OBSERVATION"],
parameters=[param_group],
)
]
)

config = Field.from_config_list(
"MY_EGRID.EGRID",
shape,
[
param_group,
param_group,
"param.GRDECL",
"INIT_FILES:param_%d.GRDECL",
"FORWARD_INIT:False",
],
)

experiment = storage.create_experiment(
parameters=[config],
responses=[resp],
observations={"OBSERVATION": obs},
)

prior = storage.create_ensemble(
experiment,
ensemble_size=num_ensemble,
iteration=0,
name="prior",
)

for iens in range(prior.ensemble_size):
prior.state_map[iens] = RealizationStorageState.HAS_DATA
prior.save_parameters(
param_group,
iens,
xr.Dataset(
{
"values": xr.DataArray(fields[iens], dims=("x", "y")),
}
),
)

prior.save_response(
"RESPONSE",
xr.Dataset(
{"values": (["report_step", "index"], [Y[:, iens]])},
coords={"index": range(len(Y[:, iens])), "report_step": [0]},
),
iens,
)

posterior_ens = storage.create_ensemble(
prior.experiment_id,
ensemble_size=prior.ensemble_size,
iteration=1,
name="posterior",
prior_ensemble=prior,
)

smoother_update_run = partial(
smoother_update,
prior,
posterior_ens,
"id",
update_config,
UpdateSettings(),
ESSettings(localization=True),
)
benchmark(smoother_update_run)

prior_da = prior.load_parameters(param_group, range(num_ensemble))
posterior_da = posterior_ens.load_parameters(param_group, range(num_ensemble))
# Because of adaptive localization, not all parameters should be updated.
# This would fail if with global updates.
assert np.isclose(prior_da, posterior_da).sum() > 0


@pytest.mark.integration_test
def test_gen_data_obs_data_mismatch(storage, uniform_parameter, update_config):
resp = GenDataConfig(name="RESPONSE")
Expand Down

0 comments on commit e88ac6f

Please sign in to comment.