Skip to content

Commit

Permalink
Avoid redundant loading of datasets
Browse files Browse the repository at this point in the history
  • Loading branch information
yngve-sk committed Nov 13, 2024
1 parent e990b65 commit 50be1d8
Showing 1 changed file with 65 additions and 49 deletions.
114 changes: 65 additions & 49 deletions src/ert/dark_storage/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,35 +101,75 @@ def data_for_key(
"""Returns a pandas DataFrame with the datapoints for a given key for a
given ensemble. The row index is the realization number, and the columns are an
index over the indexes/dates"""

if key.startswith("LOG10_"):
key = key[6:]

try:
summary_data = ensemble.load_responses(
"summary", tuple(ensemble.get_realization_list_with_responses("summary"))
)
summary_keys = summary_data["response_key"].unique().to_list()
except (ValueError, KeyError, polars.exceptions.ColumnNotFoundError):
summary_data = polars.DataFrame()
summary_keys = []

if key in summary_keys:
df = (
summary_data.filter(polars.col("response_key").eq(key))
.rename({"time": "Date", "realization": "Realization"})
.drop("response_key")
.to_pandas()
response_key_to_response_type = ensemble.experiment.response_key_to_response_type

# Check for exact match first. For example if key is "FOPRH"
# it may stop at "FOPR", which would be incorrect
response_key = next((k for k in response_key_to_response_type if k == key), None)
if response_key is None:
response_key = next(
(k for k in response_key_to_response_type if k in key), None
)
df = df.set_index(["Date", "Realization"])
# This performs the same aggragation by mean of duplicate values
# as in ert/analysis/_es_update.py
df = df.groupby(["Date", "Realization"]).mean()
data = df.unstack(level="Date")
data.columns = data.columns.droplevel(0)
try:
return data.astype(float)
except ValueError:
return data

if response_key is not None:
response_type = response_key_to_response_type[response_key]

if response_type == "summary":
summary_data = ensemble.load_responses(
response_key,
tuple(ensemble.get_realization_list_with_responses(response_key)),
)
if summary_data.is_empty():
return pd.DataFrame()

df = (
summary_data.rename({"time": "Date", "realization": "Realization"})
.drop("response_key")
.to_pandas()
)
df = df.set_index(["Date", "Realization"])
# This performs the same aggragation by mean of duplicate values
# as in ert/analysis/_es_update.py
df = df.groupby(["Date", "Realization"]).mean()
data = df.unstack(level="Date")
data.columns = data.columns.droplevel(0)
try:
return data.astype(float)
except ValueError:
return data

if response_type == "gen_data":
try:
# Call below will ValueError if key ends with H,
# requested via PlotAPI.history_data
response_key, report_step = displayed_key_to_response_key["gen_data"](
key
)
mask = ensemble.get_realization_mask_with_responses(response_key)
realizations = np.where(mask)[0]
data = ensemble.load_responses(response_key, tuple(realizations))
except ValueError as err:
print(f"Could not load response {key}: {err}")
return pd.DataFrame()

try:
vals = data.filter(polars.col("report_step").eq(report_step))
pivoted = vals.drop("response_key", "report_step").pivot(
on="index", values="values"
)
data = pivoted.to_pandas().set_index("realization")
data.columns = data.columns.astype(int)
data.columns.name = "axis"
try:
return data.astype(float)
except ValueError:
return data
except (ValueError, KeyError):
return pd.DataFrame()

group = key.split(":")[0]
parameters = ensemble.experiment.parameter_configuration
Expand Down Expand Up @@ -168,30 +208,6 @@ def data_for_key(
return data.astype(float)
except ValueError:
return data
if key in gen_data_keys(ensemble):
response_key, report_step = displayed_key_to_response_key["gen_data"](key)
try:
mask = ensemble.get_realization_mask_with_responses(response_key)
realizations = np.where(mask)[0]
data = ensemble.load_responses(response_key, tuple(realizations))
except ValueError as err:
print(f"Could not load response {key}: {err}")
return pd.DataFrame()

try:
vals = data.filter(polars.col("report_step").eq(report_step))
pivoted = vals.drop("response_key", "report_step").pivot(
on="index", values="values"
)
data = pivoted.to_pandas().set_index("realization")
data.columns = data.columns.astype(int)
data.columns.name = "axis"
try:
return data.astype(float)
except ValueError:
return data
except (ValueError, KeyError):
return pd.DataFrame()

return pd.DataFrame()

Expand Down

0 comments on commit 50be1d8

Please sign in to comment.