Skip to content

Commit

Permalink
newstart
Browse files Browse the repository at this point in the history
  • Loading branch information
endman100 committed May 25, 2022
1 parent a86f11c commit 81f725c
Show file tree
Hide file tree
Showing 586 changed files with 181,426 additions and 0 deletions.
55 changes: 55 additions & 0 deletions 整理/CrossTestTable.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
import numpy as np
import json
import cv2
import shapely
import os
import argparse
import csv

with open("CrossTest.csv", 'w', newline='') as csvfileOut:
detects = ['yolo-Result-best-rulebase', 'unet-Result-best-rulebase', 'marge']
regres = ['RARETYPE1', 'RARERGB','RAREBINARY', 'dataColor.RARERGB',
'CRNNTYPE1','CRNNRGB','CRNNBINARY', 'dataColor.CRNNRGB',
'RosettaTYPE1','RosettaRGB','RosettaBINARY', 'dataColor.RosettaRGB',
'STARNetTYPE1', 'STARNetRGB','STARNetBINARY', 'dataColor.STARNetRGB',
'dataColor.NoneResNetBiLSTMCTCRGB',
"voteRGB", "vote2RGB"]
table = np.zeros((18, len(detects), len(regres)))
for filename in os.listdir("./CrossTest/"):
name, ext = os.path.splitext(filename)

detect, regre, color = name.split("_")
regre = regre+color
print(filename, detect, regre)
with open(os.path.join('./CrossTest/', filename), newline='') as csvfile:
rows = csv.reader(csvfile, delimiter=':')
for i, row in enumerate(rows):
row = row[0].split(",")
if detect not in detects:
# print(detect, "not in ")
continue
if regre not in regres:
# print(regre, "not in ")
continue
table[i, detects.index(detect), regres.index(regre)] = float(row[-1])
print("table", table.shape)
tableMean = np.mean(table, axis=0)
# print(detects)
# print(regres)
# print(table)

writer = csv.writer(csvfileOut)
writer.writerow([""]+detects)
for i in range(len(tableMean[0])):
print(row)
row = tableMean[:,i]
writer.writerow([regres[i]]+row.tolist())

with open("CrossTestbest.csv", 'w', newline='') as csvfileOut2:
writer2 = csv.writer(csvfileOut2)
tableMaxIdx = np.argmax(table.reshape((18, len(detects)*len(regres))), axis=1)
tableMaxIdx = np.unravel_index(tableMaxIdx, (len(detects), len(regres)))
print(tableMaxIdx)
for i in range(len(tableMaxIdx[0])):
print(i, detects[tableMaxIdx[0][i]].split("-")[0], regres[tableMaxIdx[1][i]], table[i,tableMaxIdx[0][i],tableMaxIdx[1][i]])
writer2.writerow(["FPK_"+str(i+1).zfill(2)+".jpg", detects[tableMaxIdx[0][i]].split("-")[0], regres[tableMaxIdx[1][i]], table[i,tableMaxIdx[0][i],tableMaxIdx[1][i]]])
21 changes: 21 additions & 0 deletions 整理/EAST/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2019 SakuraRiven

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
75 changes: 75 additions & 0 deletions 整理/EAST/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
## Description
This is a PyTorch Re-Implementation of [EAST: An Efficient and Accurate Scene Text Detector](http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_EAST_An_Efficient_CVPR_2017_paper.pdf).

* Only RBOX part is implemented.
* Using dice loss instead of class-balanced cross-entropy loss. Some codes refer to [argman/EAST](https://github.com/argman/EAST) and [songdejia/EAST](https://github.com/songdejia/EAST)
* The pre-trained model provided achieves __82.79__ F-score on ICDAR 2015 Challenge 4 using only the 1000 images. see [here](http://rrc.cvc.uab.es/?ch=4&com=evaluation&view=method_info&task=1&m=52405) for the detailed results.

| Model | Loss | Recall | Precision | F-score |
| - | - | - | - | - |
| Original | CE | 72.75 | 80.46 | 76.41 |
| Re-Implement | Dice | 81.27 | 84.36 | 82.79 |

## Prerequisites
Only tested on
* Anaconda3
* Python 3.7.1
* PyTorch 1.0.1
* Shapely 1.6.4
* opencv-python 4.0.0.21
* lanms 1.0.2

When running the script, if some module is not installed you will see a notification and installation instructions. __if you failed to install lanms, please update gcc and binutils__. The update under conda environment is:

conda install -c omgarcia gcc-6
conda install -c conda-forge binutils

The original lanms code has a bug in ```normalize_poly``` that the ref vertices are not fixed when looping the p's ordering to calculate the minimum distance. We fixed this bug in [LANMS](https://github.com/SakuraRiven/LANMS) so that anyone could compile the correct lanms. However, this repo still uses the original lanms.

## Installation
### 1. Clone the repo

```
git clone https://github.com/SakuraRiven/EAST.git
cd EAST
```

### 2. Data & Pre-Trained Model
* Download Train and Test Data: [ICDAR 2015 Challenge 4](http://rrc.cvc.uab.es/?ch=4&com=downloads). Cut the data into four parts: train_img, train_gt, test_img, test_gt.

* Download pre-trained VGG16 from PyTorch: [VGG16](https://drive.google.com/open?id=1HgDuFGd2q77Z6DcUlDEfBZgxeJv4tald) and our trained EAST model: [EAST](https://drive.google.com/open?id=1AFABkJgr5VtxWnmBU3XcfLJvpZkC2TAg). Make a new folder ```pths``` and put the download pths into ```pths```

```
mkdir pths
mv east_vgg16.pth vgg16_bn-6c64b313.pth pths/
```

Here is an example:
```
.
├── EAST
│   ├── evaluate
│   └── pths
└── ICDAR_2015
├── test_gt
├── test_img
├── train_gt
└── train_img
```
## Train
Modify the parameters in ```train.py``` and run:
```
CUDA_VISIBLE_DEVICES=0,1 python train.py
```
## Detect
Modify the parameters in ```detect.py``` and run:
```
CUDA_VISIBLE_DEVICES=0 python detect.py
```
## Evaluate
* The evaluation scripts are from [ICDAR Offline evaluation](http://rrc.cvc.uab.es/?ch=4&com=mymethods&task=1) and have been modified to run successfully with Python 3.7.1.
* Change the ```evaluate/gt.zip``` if you test on other datasets.
* Modify the parameters in ```eval.py``` and run:
```
CUDA_VISIBLE_DEVICES=0 python eval.py
```
Binary file added 整理/EAST/__pycache__/dataset.cpython-36.pyc
Binary file not shown.
Binary file added 整理/EAST/__pycache__/detect.cpython-36.pyc
Binary file not shown.
Binary file added 整理/EAST/__pycache__/model.cpython-36.pyc
Binary file not shown.
Loading

0 comments on commit 81f725c

Please sign in to comment.