Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added tsvd tests and fixed one small bug #308

Merged
merged 5 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions lib/scholar/decomposition/truncated_svd.ex
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,7 @@ defmodule Scholar.Decomposition.TruncatedSVD do
>
iex> key = Nx.Random.key(0)
iex> x = Nx.tensor([[0, 0, 3], [1, 0, 3], [1, 1, 3], [3, 3, 3], [4, 4.5, 3]])
iex> tsvd = Scholar.Decomposition.TruncatedSVD.fit_transform(x, num_components: 2, key: key)
iex> Scholar.Decomposition.TruncatedSVD.fit_transform(x, num_components: 2, key: key)
#Nx.Tensor<
f32[5][2]
[
Expand Down Expand Up @@ -174,7 +174,7 @@ defmodule Scholar.Decomposition.TruncatedSVD do
end

{u, sigma, vt} = randomized_svd(x, key, opts)
{_u, vt} = Scholar.Decomposition.Utils.flip_svd(u, vt)
{_u, vt} = Scholar.Decomposition.Utils.flip_svd(u, vt, false)

x_transformed = Nx.dot(x, Nx.transpose(vt))
explained_variance = Nx.variance(x_transformed, axes: [0])
Expand Down
13 changes: 10 additions & 3 deletions lib/scholar/decomposition/utils.ex
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,16 @@ defmodule Scholar.Decomposition.Utils do
import Nx.Defn
require Nx

defn flip_svd(u, v) do
max_abs_cols_idx = u |> Nx.abs() |> Nx.argmax(axis: 0, keep_axis: true)
signs = u |> Nx.take_along_axis(max_abs_cols_idx, axis: 0) |> Nx.sign() |> Nx.squeeze()
defn flip_svd(u, v, u_based \\ true) do
base =
if u_based do
u
else
Nx.transpose(v)
end

max_abs_cols_idx = base |> Nx.abs() |> Nx.argmax(axis: 0, keep_axis: true)
signs = base |> Nx.take_along_axis(max_abs_cols_idx, axis: 0) |> Nx.sign() |> Nx.squeeze()
u = u * signs
v = v * Nx.new_axis(signs, -1)
{u, v}
Expand Down
210 changes: 210 additions & 0 deletions test/scholar/decomposition/truncated_svd_test.exs
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
defmodule Scholar.Decomposition.TruncatedSVDTest do
use Scholar.Case, async: true
alias Scholar.Decomposition.TruncatedSVD
doctest TruncatedSVD

defp key do
Nx.Random.key(1)
end

test "fit test - all default options" do
key = key()

{x, _new_key} =
Nx.Random.multivariate_normal(
key,
Nx.tensor([0.0, 0.0, 0.0, 0.0]),
Nx.tensor([
[3.0, 2.0, 1.0, 9.0],
[1.0, 2.0, 3.0, 8.2],
[1.3, 1.0, 2.2, 2.4],
[1.8, 1.0, 2.0, 2.9]
]),
shape: {50},
type: :f32
)

model = Scholar.Decomposition.TruncatedSVD.fit(x, key: key)

assert_all_close(
model.components,
Nx.tensor([
[0.49934840202331543, 0.44504958391189575, 0.5053765773773193, 0.5451390743255615],
[0.4780271351337433, 0.569697916507721, -0.5178372263908386, -0.42282143235206604]
]),
atol: 1.0e-3
)

assert_all_close(
model.explained_variance,
Nx.tensor([5.641434192657471, 1.3331592082977295]),
atol: 1.0e-3
)

assert_all_close(
model.explained_variance_ratio,
Nx.tensor([0.649896502494812, 0.15358072519302368]),
atol: 1.0e-3
)

assert_all_close(
model.explained_variance_ratio,
Nx.tensor([0.649896502494812, 0.15358072519302368]),
atol: 1.0e-3
)

assert_all_close(
model.singular_values,
Nx.tensor([16.81821060180664, 8.335840225219727]),
atol: 1.0e-3
)
end

test "fit_transform test - all default options" do
key = key()

{x, _new_key} =
Nx.Random.multivariate_normal(
key,
Nx.tensor([0.0, 0.0, 0.0, 0.0]),
Nx.tensor([
[3.0, 2.0, 1.0, 9.0],
[1.0, 2.0, 3.0, 8.2],
[1.3, 1.0, 2.2, 2.4],
[1.8, 1.0, 2.0, 2.9]
]),
shape: {10},
type: :f32
)

x_reduced = Scholar.Decomposition.TruncatedSVD.fit_transform(x, key: key)

assert_all_close(
x_reduced,
Nx.tensor([
[4.441530227661133, -1.5630521774291992],
[-2.187946081161499, -1.2309558391571045],
[-0.9562748074531555, -1.4839725494384766],
[2.2274107933044434, 0.1483912318944931],
[2.879176378250122, -0.12200745940208435],
[2.8487348556518555, 0.8317009806632996],
[1.9470200538635254, 0.96690434217453],
[2.140472173690796, -1.0529983043670654],
[-1.265346884727478, -0.7587057948112488],
[-0.8837906122207642, 0.07025688886642456]
]),
atol: 1.0e-3
)
end

test "fit_transform test - :num_components" do
key = key()

{x, _new_key} =
Nx.Random.multivariate_normal(
key,
Nx.tensor([0.0, 0.0, 0.0, 0.0]),
Nx.tensor([
[3.0, 2.0, 1.0, 9.0],
[1.0, 2.0, 3.0, 8.2],
[1.3, 1.0, 2.2, 2.4],
[1.8, 1.0, 2.0, 2.9]
]),
shape: {10},
type: :f32
)

x_reduced = Scholar.Decomposition.TruncatedSVD.fit_transform(x, key: key, num_components: 3)

assert_all_close(
x_reduced,
Nx.tensor([
[4.441530704498291, -1.5630513429641724, 0.08955635130405426],
[-2.1879451274871826, -1.2309576272964478, 1.2222723960876465],
[-0.9562751054763794, -1.4839714765548706, -0.562005341053009],
[2.2274117469787598, 0.1483895182609558, 0.8012741804122925],
[2.879176378250122, -0.12200674414634705, -0.7124714255332947],
[2.8487346172332764, 0.8317020535469055, -0.1308409571647644],
[1.9470199346542358, 0.9669057130813599, 0.6275887489318848],
[2.140472412109375, -1.0529969930648804, 0.32528647780418396],
[-1.2653470039367676, -0.7587059140205383, -0.5229729413986206],
[-0.8837906122207642, 0.0702567845582962, 0.2195502668619156]
]),
atol: 1.0e-3
)
end

test "fit_transform test - :num_oversamples" do
key = key()

{x, _new_key} =
Nx.Random.multivariate_normal(
key,
Nx.tensor([0.0, 0.0, 0.0, 0.0]),
Nx.tensor([
[3.0, 2.0, 1.0, 9.0],
[1.0, 2.0, 3.0, 8.2],
[1.3, 1.0, 2.2, 2.4],
[1.8, 1.0, 2.0, 2.9]
]),
shape: {10},
type: :f32
)

x_reduced = Scholar.Decomposition.TruncatedSVD.fit_transform(x, key: key, num_oversamples: 20)

assert_all_close(
x_reduced,
Nx.tensor([
[4.441530227661133, -1.5630521774291992],
[-2.187946081161499, -1.2309565544128418],
[-0.9562748670578003, -1.4839720726013184],
[2.2274110317230225, 0.14839033782482147],
[2.879176616668701, -0.12200725078582764],
[2.8487348556518555, 0.8317012190818787],
[1.9470199346542358, 0.9669046401977539],
[2.140472173690796, -1.0529980659484863],
[-1.265346884727478, -0.7587056756019592],
[-0.8837906122207642, 0.07025686651468277]
]),
atol: 1.0e-3
)
end

test "fit_transform test - :num_iters" do
key = key()

{x, _new_key} =
Nx.Random.multivariate_normal(
key,
Nx.tensor([0.0, 0.0, 0.0, 0.0]),
Nx.tensor([
[3.0, 2.0, 1.0, 9.0],
[1.0, 2.0, 3.0, 8.2],
[1.3, 1.0, 2.2, 2.4],
[1.8, 1.0, 2.0, 2.9]
]),
shape: {10},
type: :f32
)

x_reduced = Scholar.Decomposition.TruncatedSVD.fit_transform(x, key: key, num_iter: 20)

assert_all_close(
x_reduced,
Nx.tensor([
[4.441530227661133, -1.5630522966384888],
[-2.18794584274292, -1.2309566736221313],
[-0.9562749862670898, -1.4839718341827393],
[2.2274110317230225, 0.1483900398015976],
[2.879176378250122, -0.1220073327422142],
[2.8487348556518555, 0.8317012190818787],
[1.9470200538635254, 0.9669046998023987],
[2.140472173690796, -1.0529979467391968],
[-1.265346884727478, -0.7587056159973145],
[-0.8837906122207642, 0.07025690376758575]
]),
atol: 1.0e-3
)
end
end
Loading