-
Notifications
You must be signed in to change notification settings - Fork 47
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added Ledoit Wolf shrinkage covariance estimator #304
Merged
Merged
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
8130a35
adding masks
norm4nn f90a57d
working ledoit wolf
norm4nn 7313e54
Added module struct, docs and examples
norm4nn 6ad0360
run mix format
norm4nn fa8e7a4
added tests
norm4nn d5214bf
mix format
norm4nn 86bdc7c
Update lib/scholar/covariance/ledoit_wolf.ex
norm4nn 9cb0e3a
Update lib/scholar/covariance/ledoit_wolf.ex
norm4nn 6efc807
Update lib/scholar/covariance/ledoit_wolf.ex
norm4nn 08285ae
Update lib/scholar/covariance/ledoit_wolf.ex
norm4nn 06fd93d
removed redundant delta from loops
norm4nn 5bb867c
addressing comments, removed unnecessary loops
norm4nn bf491f0
removed :block_size from test
norm4nn 7abde84
fixed first sentence of docs
norm4nn File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
defmodule Scholar.Covariance.LedoitWolf do | ||
@moduledoc """ | ||
Ledoit-Wolf is a particular form of shrinkage covariance estimator, where the shrinkage coefficient is computed using O. Ledoit and M. Wolf’s formula. | ||
|
||
Ledoit and M. Wolf's formula as | ||
described in "A Well-Conditioned Estimator for Large-Dimensional | ||
Covariance Matrices", Ledoit and Wolf, Journal of Multivariate | ||
Analysis, Volume 88, Issue 2, February 2004, pages 365-411. | ||
""" | ||
import Nx.Defn | ||
|
||
@derive {Nx.Container, containers: [:covariance, :shrinkage, :location]} | ||
defstruct [:covariance, :shrinkage, :location] | ||
|
||
opts_schema = [ | ||
assume_centered: [ | ||
default: false, | ||
type: :boolean, | ||
doc: """ | ||
If `true`, data will not be centered before computation. | ||
Useful when working with data whose mean is almost, but not exactly | ||
zero. | ||
If `false`, data will be centered before computation. | ||
""" | ||
] | ||
] | ||
|
||
@opts_schema NimbleOptions.new!(opts_schema) | ||
@doc """ | ||
Estimate the shrunk Ledoit-Wolf covariance matrix. | ||
|
||
## Options | ||
|
||
#{NimbleOptions.docs(@opts_schema)} | ||
|
||
## Return Values | ||
|
||
The function returns a struct with the following parameters: | ||
|
||
* `:covariance` - Tensor of shape `{num_features, num_features}`. Estimated covariance matrix. | ||
|
||
* `:shrinkage` - Coefficient in the convex combination used for the computation of the shrunken estimate. Range is `[0, 1]`. | ||
|
||
* `:location` - Tensor of shape `{num_features,}`. | ||
Estimated location, i.e. the estimated mean. | ||
|
||
## Examples | ||
|
||
iex> key = Nx.Random.key(0) | ||
iex> {x, _new_key} = Nx.Random.multivariate_normal(key, Nx.tensor([0.0, 0.0]), Nx.tensor([[0.4, 0.2], [0.2, 0.8]]), shape: {50}, type: :f32) | ||
iex> model = Scholar.Covariance.LedoitWolf.fit(x) | ||
iex> model.covariance | ||
#Nx.Tensor< | ||
f32[2][2] | ||
[ | ||
[0.3557686507701874, 0.17340737581253052], | ||
[0.17340737581253052, 1.0300586223602295] | ||
] | ||
> | ||
iex> model.shrinkage | ||
#Nx.Tensor< | ||
f32 | ||
0.15034137666225433 | ||
> | ||
iex> model.location | ||
#Nx.Tensor< | ||
f32[2] | ||
[0.17184630036354065, 0.3276958167552948] | ||
> | ||
|
||
iex> key = Nx.Random.key(0) | ||
iex> {x, _new_key} = Nx.Random.multivariate_normal(key, Nx.tensor([0.0, 0.0, 0.0]), Nx.tensor([[3.0, 2.0, 1.0], [1.0, 2.0, 3.0], [1.3, 1.0, 2.2]]), shape: {10}, type: :f32) | ||
iex> model = Scholar.Covariance.LedoitWolf.fit(x) | ||
iex> model.covariance | ||
#Nx.Tensor< | ||
f32[3][3] | ||
[ | ||
[2.5945029258728027, 1.5078359842300415, 1.1623677015304565], | ||
[1.5078359842300415, 2.106797456741333, 1.1812156438827515], | ||
[1.1623677015304565, 1.1812156438827515, 1.4606266021728516] | ||
] | ||
> | ||
iex> model.shrinkage | ||
#Nx.Tensor< | ||
f32 | ||
0.1908363401889801 | ||
> | ||
iex> model.location | ||
#Nx.Tensor< | ||
f32[3] | ||
[1.1228725910186768, 0.5419300198554993, 0.8678852319717407] | ||
> | ||
|
||
iex> key = Nx.Random.key(0) | ||
iex> {x, _new_key} = Nx.Random.multivariate_normal(key, Nx.tensor([0.0, 0.0, 0.0]), Nx.tensor([[3.0, 2.0, 1.0], [1.0, 2.0, 3.0], [1.3, 1.0, 2.2]]), shape: {10}, type: :f32) | ||
iex> cov = Scholar.Covariance.LedoitWolf.fit(x, assume_centered: true) | ||
iex> cov.covariance | ||
#Nx.Tensor< | ||
f32[3][3] | ||
[ | ||
[3.8574986457824707, 2.2048025131225586, 2.1504499912261963], | ||
[2.2048025131225586, 2.4572863578796387, 1.7215262651443481], | ||
[2.1504499912261963, 1.7215262651443481, 2.154898166656494] | ||
] | ||
> | ||
""" | ||
|
||
deftransform fit(x, opts \\ []) do | ||
fit_n(x, NimbleOptions.validate!(opts, @opts_schema)) | ||
end | ||
|
||
defnp fit_n(x, opts) do | ||
{x, location} = center(x, opts) | ||
|
||
{covariance, shrinkage} = | ||
ledoit_wolf(x) | ||
|
||
%__MODULE__{ | ||
covariance: covariance, | ||
shrinkage: shrinkage, | ||
location: location | ||
} | ||
end | ||
|
||
defnp center(x, opts) do | ||
x = | ||
case Nx.shape(x) do | ||
{_} -> Nx.new_axis(x, 1) | ||
_ -> x | ||
end | ||
|
||
location = | ||
if opts[:assume_centered] do | ||
0 | ||
else | ||
Nx.mean(x, axes: [0]) | ||
end | ||
|
||
{x - location, location} | ||
end | ||
|
||
defnp ledoit_wolf(x) do | ||
case Nx.shape(x) do | ||
{_n, 1} -> | ||
{Nx.mean(x ** 2) |> Nx.reshape({1, 1}), 0.0} | ||
|
||
_ -> | ||
ledoit_wolf_shrinkage(x) | ||
end | ||
end | ||
|
||
defnp empirical_covariance(x) do | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think this can be replaced with |
||
n = Nx.axis_size(x, 0) | ||
|
||
covariance = Nx.dot(x, [0], x, [0]) / n | ||
|
||
case Nx.shape(covariance) do | ||
{} -> Nx.reshape(covariance, {1, 1}) | ||
_ -> covariance | ||
end | ||
end | ||
|
||
defnp trace(x) do | ||
x | ||
|> Nx.take_diagonal() | ||
|> Nx.sum() | ||
end | ||
|
||
defnp ledoit_wolf_shrinkage(x) do | ||
case Nx.shape(x) do | ||
{_, 1} -> | ||
0 | ||
|
||
{n} -> | ||
Nx.reshape(x, {1, n}) | ||
|> ledoit_wolf_shrinkage_complex() | ||
|
||
_ -> | ||
ledoit_wolf_shrinkage_complex(x) | ||
end | ||
end | ||
|
||
defnp ledoit_wolf_shrinkage_complex(x) do | ||
{num_samples, num_features} = Nx.shape(x) | ||
emp_cov = empirical_covariance(x) | ||
|
||
emp_cov_trace = trace(emp_cov) | ||
mu = Nx.sum(emp_cov_trace) / num_features | ||
|
||
flatten_delta = Nx.flatten(emp_cov) | ||
|
||
indices = | ||
Nx.shape(flatten_delta) | ||
|> Nx.iota() | ||
|
||
subtract = Nx.select(Nx.remainder(indices, num_features + 1) == 0, mu, 0) | ||
|
||
delta = | ||
(flatten_delta - subtract) | ||
|> Nx.pow(2) | ||
|> Nx.sum() | ||
|
||
delta = delta / num_features | ||
|
||
x2 = Nx.pow(x, 2) | ||
|
||
beta = | ||
(Nx.dot(x2, [0], x2, [0]) / num_samples - emp_cov ** 2) | ||
|> Nx.sum() | ||
|> Nx.divide(num_features * num_samples) | ||
|
||
beta = Nx.min(beta, delta) | ||
shrinkage = beta / delta | ||
|
||
shrunk_cov = (1.0 - shrinkage) * emp_cov | ||
mask = Nx.iota(Nx.shape(shrunk_cov)) | ||
selector = Nx.remainder(mask, num_features + 1) == 0 | ||
shrunk_cov = Nx.select(selector, shrunk_cov + shrinkage * mu, shrunk_cov) | ||
|
||
{shrunk_cov, shrinkage} | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
defmodule Scholar.Covariance.LedoitWolfTest do | ||
use Scholar.Case, async: true | ||
alias Scholar.Covariance.LedoitWolf | ||
doctest LedoitWolf | ||
|
||
defp key do | ||
Nx.Random.key(1) | ||
end | ||
|
||
test "fit test - all default options" do | ||
key = key() | ||
|
||
{x, _new_key} = | ||
Nx.Random.multivariate_normal( | ||
key, | ||
Nx.tensor([0.0, 0.0, 0.0]), | ||
Nx.tensor([[3.0, 2.0, 1.0], [1.0, 2.0, 3.0], [1.3, 1.0, 2.2]]), | ||
shape: {10}, | ||
type: :f32 | ||
) | ||
|
||
model = LedoitWolf.fit(x) | ||
|
||
assert_all_close( | ||
model.covariance, | ||
Nx.tensor([ | ||
[1.439786434173584, -0.0, 0.0], | ||
[-0.0, 1.439786434173584, 0.0], | ||
[0.0, 0.0, 1.439786434173584] | ||
]), | ||
atol: 1.0e-3 | ||
) | ||
|
||
assert_all_close(model.shrinkage, Nx.tensor(1.0), atol: 1.0e-3) | ||
|
||
assert_all_close( | ||
model.location, | ||
Nx.tensor([-1.015519142150879, -0.4495307505130768, 0.06475571542978287]), | ||
atol: 1.0e-3 | ||
) | ||
end | ||
|
||
test "fit test - :assume_centered is true" do | ||
key = key() | ||
|
||
{x, _new_key} = | ||
Nx.Random.multivariate_normal( | ||
key, | ||
Nx.tensor([0.0, 0.0, 0.0]), | ||
Nx.tensor([[3.0, 2.0, 1.0], [1.0, 2.0, 3.0], [1.3, 1.0, 2.2]]), | ||
shape: {10}, | ||
type: :f32 | ||
) | ||
|
||
model = LedoitWolf.fit(x, assume_centered: true) | ||
|
||
assert_all_close( | ||
model.covariance, | ||
Nx.tensor([ | ||
[1.852303147315979, 0.0, 0.0], | ||
[0.0, 1.852303147315979, 0.0], | ||
[0.0, 0.0, 1.852303147315979] | ||
]), | ||
atol: 1.0e-3 | ||
) | ||
|
||
assert_all_close(model.shrinkage, Nx.tensor(1.0), atol: 1.0e-3) | ||
|
||
assert_all_close(model.location, Nx.tensor([0, 0, 0]), atol: 1.0e-3) | ||
end | ||
|
||
test "fit test 2" do | ||
key = key() | ||
|
||
{x, _new_key} = | ||
Nx.Random.multivariate_normal( | ||
key, | ||
Nx.tensor([0.0, 0.0]), | ||
Nx.tensor([[2.2, 1.5], [0.7, 1.1]]), | ||
shape: {50}, | ||
type: :f32 | ||
) | ||
|
||
model = LedoitWolf.fit(x) | ||
|
||
assert_all_close( | ||
model.covariance, | ||
Nx.tensor([ | ||
[1.8378269672393799, 0.27215731143951416], | ||
[0.27215731143951416, 1.2268550395965576] | ||
]), | ||
atol: 1.0e-3 | ||
) | ||
|
||
assert_all_close(model.shrinkage, Nx.tensor(0.38731059432029724), atol: 1.0e-3) | ||
|
||
assert_all_close(model.location, Nx.tensor([0.06882287561893463, 0.13750331103801727]), | ||
atol: 1.0e-3 | ||
) | ||
end | ||
|
||
test "fit test - 1 dim x" do | ||
key = key() | ||
|
||
{x, _new_key} = | ||
Nx.Random.multivariate_normal(key, Nx.tensor([0.0]), Nx.tensor([[0.4]]), | ||
shape: {15}, | ||
type: :f32 | ||
) | ||
|
||
x = Nx.flatten(x) | ||
|
||
model = LedoitWolf.fit(x) | ||
|
||
assert_all_close( | ||
model.covariance, | ||
Nx.tensor([ | ||
[0.5322133302688599] | ||
]), | ||
atol: 1.0e-3 | ||
) | ||
|
||
assert_all_close(model.shrinkage, Nx.tensor(0.0), atol: 1.0e-3) | ||
|
||
assert_all_close(model.location, Nx.tensor([0.060818854719400406]), atol: 1.0e-3) | ||
end | ||
end |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I would rename it to
assume_centered?
(add?
).