-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add OPTICS clustering algorithm (#295)
- Loading branch information
Showing
1 changed file
with
303 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
defmodule Scholar.Cluster.OPTICS do | ||
@moduledoc """ | ||
OPTICS (Ordering Points To Identify the Clustering Structure) is an algorithm | ||
for finding density-based clusters in spatial data. | ||
It is closely related to DBSCAN, finds core sample of high density and expands | ||
clusters from them. Unlike DBSCAN, keeps cluster hierarchy for a variable | ||
neighborhood radius. Clusters are then extracted using a DBSCAN-like | ||
method. | ||
""" | ||
import Nx.Defn | ||
require Nx | ||
|
||
@derive {Nx.Container, containers: [:labels, :min_samples, :max_eps, :eps, :algorithm]} | ||
defstruct [:labels, :min_samples, :max_eps, :eps, :algorithm] | ||
|
||
opts = [ | ||
min_samples: [ | ||
default: 5, | ||
type: :pos_integer, | ||
doc: """ | ||
The number of samples in a neighborhood for a point to be considered as a core point. | ||
""" | ||
], | ||
max_eps: [ | ||
type: {:custom, Scholar.Options, :beta, []}, | ||
doc: """ | ||
The maximum distance between two samples for one to be considered as in the neighborhood of the other. | ||
Default value of Nx.Constants.infinity() will identify clusters across all scales. | ||
""" | ||
], | ||
eps: [ | ||
type: {:custom, Scholar.Options, :beta, []}, | ||
doc: """ | ||
The maximum distance between two samples for one to be considered as in the neighborhood of the other. | ||
By default it assumes the same value as max_eps. | ||
""" | ||
], | ||
algorithm: [ | ||
default: :brute, | ||
type: :atom, | ||
doc: """ | ||
Algorithm used to compute the k-nearest neighbors. Possible values: | ||
* `:brute` - Brute-force search. See `Scholar.Neighbors.BruteKNN` for more details. | ||
* `:kd_tree` - k-d tree. See `Scholar.Neighbors.KDTree` for more details. | ||
* `:random_projection_forest` - Random projection forest. See `Scholar.Neighbors.RandomProjectionForest` for more details. | ||
* Module implementing `fit(data, opts)` and `predict(model, query)`. predict/2 must return a tuple containing indices | ||
of k-nearest neighbors of query points as well as distances between query points and their k-nearest neighbors. | ||
Also has to take num_neighbors as argument. | ||
""" | ||
] | ||
] | ||
|
||
@opts_schema NimbleOptions.new!(opts) | ||
|
||
@doc """ | ||
Perform OPTICS clustering for `x` which is tensor of `{n_samples, n_features} shape. | ||
## Options | ||
#{NimbleOptions.docs(@opts_schema)} | ||
## Return Values | ||
The function returns a labels tensor of shape `{n_samples}`. | ||
Cluster labels for each point in the dataset given to fit(). | ||
Noisy samples are labeled as -1. | ||
## Examples | ||
iex> x = Nx.tensor([[1, 2], [2, 5], [3, 6], [8, 7], [8, 8], [7, 3]]) | ||
iex> Scholar.Cluster.OPTICS.fit(x, min_samples: 2).labels | ||
#Nx.Tensor< | ||
s64[6] | ||
[-1, -1, -1, -1, -1, -1] | ||
> | ||
iex> Scholar.Cluster.OPTICS.fit(x, eps: 4.5, min_samples: 2).labels | ||
#Nx.Tensor< | ||
s64[6] | ||
[0, 0, 0, 1, 1, 1] | ||
> | ||
iex> Scholar.Cluster.OPTICS.fit(x, eps: 2, min_samples: 2).labels | ||
#Nx.Tensor< | ||
s64[6] | ||
[-1, 0, 0, 1, 1, -1] | ||
> | ||
iex> Scholar.Cluster.OPTICS.fit(x, eps: 2, min_samples: 2, algorithm: :kd_tree, metric: {:minkowski, 1}).labels | ||
#Nx.Tensor< | ||
s64[6] | ||
[-1, 0, 0, 1, 1, -1] | ||
> | ||
iex> Scholar.Cluster.OPTICS.fit(x, eps: 1, min_samples: 2).labels | ||
#Nx.Tensor< | ||
s64[6] | ||
[-1, -1, -1, 0, 0, -1] | ||
> | ||
iex> Scholar.Cluster.OPTICS.fit(x, eps: 4.5, min_samples: 3).labels | ||
#Nx.Tensor< | ||
s64[6] | ||
[0, 0, 0, 1, 1, -1] | ||
> | ||
""" | ||
|
||
defn fit(x, opts \\ []) do | ||
if Nx.rank(x) != 2 do | ||
raise ArgumentError, | ||
""" | ||
expected x to have shape {num_samples, num_features}, \ | ||
got tensor with shape: #{inspect(Nx.shape(x))} | ||
""" | ||
end | ||
|
||
x = Scholar.Shared.to_float(x) | ||
module = validate_options(x, opts) | ||
|
||
%__MODULE__{ | ||
module | ||
| labels: fit_p(x, module) | ||
} | ||
end | ||
|
||
deftransformp validate_options(x, opts \\ []) do | ||
{opts, algorithm_opts} = Keyword.split(opts, [:min_samples, :max_eps, :eps, :algorithm]) | ||
opts = NimbleOptions.validate!(opts, @opts_schema) | ||
min_samples = opts[:min_samples] | ||
|
||
if min_samples < 2 do | ||
raise ArgumentError, | ||
""" | ||
min_samples must be an int in the range [2, inf), got min_samples = #{inspect(min_samples)} | ||
""" | ||
end | ||
|
||
algorithm_opts = Keyword.put(algorithm_opts, :num_neighbors, 1) | ||
|
||
algorithm_module = | ||
case opts[:algorithm] do | ||
:brute -> | ||
Scholar.Neighbors.BruteKNN | ||
|
||
:kd_tree -> | ||
Scholar.Neighbors.KDTree | ||
|
||
:random_projection_forest -> | ||
Scholar.Neighbors.RandomProjectionForest | ||
|
||
module when is_atom(module) -> | ||
module | ||
end | ||
|
||
model = algorithm_module.fit(x, algorithm_opts) | ||
|
||
max_eps = | ||
case opts[:max_eps] do | ||
nil -> Nx.Constants.infinity(Nx.type(x)) | ||
any -> any | ||
end | ||
|
||
eps = | ||
case opts[:eps] do | ||
nil -> max_eps | ||
any -> any | ||
end | ||
|
||
if eps > max_eps do | ||
raise ArgumentError, | ||
""" | ||
eps can't be greater than max_eps, got eps = #{inspect(eps)} and max_eps = #{inspect(max_eps)} | ||
""" | ||
end | ||
|
||
%__MODULE__{ | ||
labels: Nx.broadcast(-1, {Nx.axis_size(x, 0)}), | ||
min_samples: min_samples, | ||
max_eps: max_eps, | ||
eps: eps, | ||
algorithm: model | ||
} | ||
end | ||
|
||
defnp fit_p(x, module) do | ||
{core_distances, reachability, _predecessor, ordering} = compute_optics_graph(x, module) | ||
|
||
cluster_optics_dbscan(reachability, core_distances, ordering, module) | ||
end | ||
|
||
defnp compute_optics_graph(x, %__MODULE__{max_eps: max_eps, min_samples: min_samples} = module) do | ||
n_samples = Nx.axis_size(x, 0) | ||
reachability = Nx.broadcast(Nx.Constants.max_finite(Nx.type(x)), {n_samples}) | ||
predecessor = Nx.broadcast(-1, {n_samples}) | ||
{_neighbors, distances} = run_knn(x, x, module) | ||
core_distances = Nx.slice_along_axis(distances, min_samples - 1, 1, axis: 1) | ||
|
||
core_distances = | ||
Nx.select(core_distances > max_eps, Nx.Constants.infinity(), core_distances) | ||
|
||
ordering = Nx.broadcast(0, {n_samples}) | ||
processed = Nx.broadcast(0, {n_samples}) | ||
|
||
{_order_idx, core_distances, reachability, predecessor, _processed, ordering, _x, _module} = | ||
while {order_idx = 0, core_distances, reachability, predecessor, processed, ordering, x, | ||
module}, | ||
order_idx < n_samples do | ||
unprocessed_mask = processed == 0 | ||
point = Nx.argmin(Nx.select(unprocessed_mask, reachability, Nx.Constants.infinity())) | ||
processed = Nx.put_slice(processed, [point], Nx.new_axis(1, 0)) | ||
ordering = Nx.put_slice(ordering, [order_idx], Nx.new_axis(point, 0)) | ||
|
||
{reachability, predecessor} = | ||
set_reach_dist(core_distances, reachability, predecessor, point, processed, x, module) | ||
|
||
{order_idx + 1, core_distances, reachability, predecessor, processed, ordering, x, module} | ||
end | ||
|
||
reachability = | ||
Nx.select( | ||
reachability == Nx.Constants.max_finite(Nx.type(x)), | ||
Nx.Constants.infinity(), | ||
reachability | ||
) | ||
|
||
{core_distances, reachability, predecessor, ordering} | ||
end | ||
|
||
defnp set_reach_dist( | ||
core_distances, | ||
reachability, | ||
predecessor, | ||
point_index, | ||
processed, | ||
x, | ||
%__MODULE__{max_eps: max_eps} = module | ||
) do | ||
n_features = Nx.axis_size(x, 1) | ||
n_samples = Nx.axis_size(x, 0) | ||
t = Nx.take(x, point_index, axis: 0) | ||
p = Nx.broadcast(t, {1, n_features}) | ||
{neighbors, distances} = run_knn(x, p, %__MODULE__{module | min_samples: n_samples}) | ||
neighbors = Nx.flatten(neighbors) | ||
distances = Nx.flatten(distances) | ||
indices_ngbrs = Nx.argsort(neighbors) | ||
neighbors = Nx.take(neighbors, indices_ngbrs) | ||
distances = Nx.take(distances, indices_ngbrs) | ||
are_neighbors_processed = Nx.take(processed, neighbors) | ||
|
||
filtered_neighbors = | ||
Nx.select( | ||
are_neighbors_processed or distances > max_eps, | ||
-1 * neighbors, | ||
neighbors | ||
) | ||
|
||
dists = Nx.flatten(Scholar.Metrics.Distance.pairwise_minkowski(p, x)) | ||
core_distance = Nx.take(core_distances, point_index) | ||
rdists = Nx.max(dists, core_distance) | ||
improved = rdists < reachability | ||
improved = Nx.select(improved, filtered_neighbors, -1) | ||
|
||
improved = | ||
Nx.select( | ||
improved == -1 and filtered_neighbors > 0, | ||
Nx.multiply(filtered_neighbors, -1), | ||
filtered_neighbors | ||
) | ||
|
||
rdists = Nx.select(improved >= 0, rdists, 0) | ||
reversed_improved = Nx.max(improved * -1, 0) | ||
|
||
reachability = | ||
Nx.select(improved <= 0, Nx.take(reachability, reversed_improved), rdists) | ||
|
||
predecessor = | ||
Nx.select(improved <= 0, Nx.take(predecessor, reversed_improved), point_index) | ||
|
||
{reachability, predecessor} | ||
end | ||
|
||
deftransformp run_knn(x, p, %__MODULE__{algorithm: algorithm_module, min_samples: k} = _module) do | ||
nbrs = algorithm_module.__struct__.fit(x, num_neighbors: k) | ||
algorithm_module.__struct__.predict(nbrs, p) | ||
end | ||
|
||
defnp cluster_optics_dbscan( | ||
reachability, | ||
core_distances, | ||
ordering, | ||
%__MODULE__{eps: eps} = _module | ||
) do | ||
far_reach = Nx.flatten(reachability > eps) | ||
near_core = Nx.flatten(core_distances <= eps) | ||
far_and_not_near = Nx.multiply(far_reach, 1 - near_core) | ||
far_reach = Nx.take(far_reach, ordering) | ||
near_core = Nx.take(near_core, ordering) | ||
far_and_near = far_reach * near_core | ||
labels = Nx.as_type(Nx.cumulative_sum(far_and_near), :s8) - 1 | ||
labels = Nx.take(labels, Nx.argsort(ordering)) | ||
Nx.select(far_and_not_near, -1, labels) | ||
end | ||
end |