Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

main into prod #24

Merged
merged 4 commits into from
Feb 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 19 additions & 8 deletions drivers/generate_stage2.R
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
## setup
library(gdalcubes)
library(gefs4cast)
source("https://raw.githubusercontent.com/eco4cast/neon4cast/main/R/to_hourly.R")
# need to source to_hourly.R instead of from neon4cast because there are neon-specific code in neon4cast
source("drivers/to_hourly.R")

Sys.setenv("GEFS_VERSION"="v12")

Expand All @@ -21,19 +22,28 @@ s3_stage2 <- gefs4cast::gefs_s3_dir(product = "stage2",
endpoint = config$endpoint,
bucket = driver_bucket)

df <- arrow::open_dataset(s3_stage2) |>
dplyr::distinct(reference_datetime) |>
dplyr::collect()

# if there aren't any data (i.e., this is the first time we're creating this dataset),
# then skip the distinct(reference_datetime) filter
df <- arrow::open_dataset(s3_stage2)
if(length(df$files) > 0){
df <- arrow::open_dataset(s3_stage2) |>
dplyr::distinct(reference_datetime) |>
dplyr::collect()
}

curr_date <- Sys.Date()
last_week <- dplyr::tibble(reference_datetime = as.character(seq(curr_date - lubridate::days(7),
curr_date - lubridate::days(1),
by = "1 day")))

missing_dates <- dplyr::anti_join(last_week, df,
by = "reference_datetime") |>
dplyr::pull(reference_datetime)
if(length(df$files) > 0){
missing_dates <- dplyr::anti_join(last_week, df,
by = "reference_datetime") |>
dplyr::pull(reference_datetime)
}else{
missing_dates <- dplyr::pull(last_week, reference_datetime)
}


if(length(missing_dates) > 0){
for(i in 1:length(missing_dates)){
Expand All @@ -55,6 +65,7 @@ if(length(missing_dates) > 0){
dplyr::mutate(reference_datetime = missing_dates[i])

hourly_df <- to_hourly(site_df,
site_list = dplyr::select(site_list, site_id, latitude, longitude),
use_solar_geom = TRUE,
psuedo = FALSE) |>
dplyr::mutate(ensemble = as.numeric(stringr::str_sub(ensemble, start = 4, end = 5)),
Expand Down
11 changes: 6 additions & 5 deletions drivers/generate_stage3.R
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
library(minioclient)
library(gdalcubes)
library(gefs4cast)
source("https://raw.githubusercontent.com/eco4cast/neon4cast/main/R/to_hourly.R")
source("drivers/to_hourly.R")

config <- yaml::read_yaml("challenge_configuration.yaml")
driver_bucket <- stringr::word(config$driver_bucket, 1, sep = "/")
Expand All @@ -21,8 +21,7 @@ df <- arrow::open_dataset("pseudo") |>

site_list <- readr::read_csv(paste0("https://github.com/eco4cast/usgsrc4cast-ci/",
"raw/prod/USGS_site_metadata.csv"),
show_col_types = FALSE) |>
dplyr::pull(site_id)
show_col_types = FALSE)


s3_stage3 <- gefs4cast::gefs_s3_dir(product = "stage3",
Expand All @@ -32,7 +31,7 @@ s3_stage3 <- gefs4cast::gefs_s3_dir(product = "stage3",

future::plan("future::multisession", workers = 8)

furrr::future_walk(site_list, function(curr_site_id){
furrr::future_walk(dplyr::pull(site_list, site_id), function(curr_site_id){

df <- arrow::open_dataset("pseudo") |>
dplyr::filter(variable %in% c("PRES","TMP","RH","UGRD","VGRD","APCP","DSWRF","DLWRF")) |>
Expand All @@ -46,7 +45,9 @@ furrr::future_walk(site_list, function(curr_site_id){

print(curr_site_id)
df |>
to_hourly(use_solar_geom = TRUE, psuedo = TRUE) |>
to_hourly(site_list = dplyr::select(site_list, site_id, latitude, longitude),
use_solar_geom = TRUE,
psuedo = TRUE) |>
dplyr::mutate(ensemble = as.numeric(stringr::str_sub(ensemble, start = 4, end = 5))) |>
dplyr::rename(parameter = ensemble) |>
arrow::write_dataset(path = s3, partitioning = "site_id")
Expand Down
136 changes: 136 additions & 0 deletions drivers/to_hourly.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@

#'
#' @param df dataframe of stage1 NEON GEFS forecasts for sites to forecast at
#' @param site_list a dataframe of the latitude and longitude for all site_ids in df
#' @param use_solar_geom logical for using solar geometry for daily SW calculation
#' @param psuedo logical for something...
to_hourly <- function(df,
site_list,
use_solar_geom = TRUE,
psuedo = FALSE){

if(!psuedo){
reference_datetime <- lubridate::as_datetime(df$reference_datetime)[1]
}else{
reference_datetime <- NA
}

var_order <- names(df)

ensemble_maxtime <- df |>
dplyr::group_by(site_id, family, ensemble) |>
dplyr::summarise(max_time = max(datetime), .groups = "drop")

ensembles <- unique(df$ensemble)
datetime <- seq(min(df$datetime), max(df$datetime), by = "1 hour")
variables <- unique(df$variable)
sites <- unique(df$site_id)

full_time <- expand.grid(sites, ensembles, datetime, variables) |>
dplyr::rename(site_id = Var1,
ensemble = Var2,
datetime = Var3,
variable = Var4) |>
dplyr::mutate(datetime = lubridate::as_datetime(datetime)) |>
dplyr::arrange(site_id, ensemble, variable, datetime) |>
dplyr::left_join(ensemble_maxtime, by = c("site_id","ensemble")) |>
dplyr::filter(datetime <= max_time) |>
dplyr::select(-c("max_time")) |>
dplyr::distinct()

states <- df |>
dplyr::select(site_id, family, horizon, ensemble, datetime, variable, prediction) |>
dplyr::filter(!psuedo | (psuedo & horizon != "006") | (psuedo & datetime == max(df$datetime))) |>
dplyr::select(-horizon) |>
dplyr::group_by(site_id, family, ensemble, variable) |>
dplyr::right_join(full_time, by = c("site_id", "ensemble", "datetime", "family", "variable")) |>
dplyr::filter(variable %in% c("PRES", "RH", "TMP", "UGRD", "VGRD")) |>
dplyr::arrange(site_id, family, ensemble, datetime) |>
dplyr::mutate(prediction = imputeTS::na_interpolation(prediction, option = "linear")) |>
dplyr::mutate(prediction = ifelse(variable == "TMP", prediction + 273, prediction)) |>
dplyr::mutate(prediction = ifelse(variable == "RH", prediction/100, prediction)) |>
dplyr::ungroup()

fluxes <- df |>
dplyr::select(site_id, family, horizon, ensemble, datetime, variable, prediction) |>
dplyr::filter(horizon != "003") |>
dplyr::select(-horizon) |>
dplyr::group_by(site_id, family, ensemble, variable) |>
dplyr::right_join(full_time, by = c("site_id", "ensemble", "datetime", "family", "variable")) |>
dplyr::filter(variable %in% c("APCP","DSWRF","DLWRF")) |>
dplyr::arrange(site_id, family, ensemble, datetime) |>
tidyr::fill(prediction, .direction = "up") |>
dplyr::mutate(prediction = ifelse(variable == "APCP", prediction / (6 * 60 * 60), prediction),
variable = ifelse(variable == "APCP", "PRATE", variable)) |>
dplyr::ungroup()

if(use_solar_geom){

fluxes <- fluxes |>
dplyr::left_join(site_list, by = "site_id") |>
dplyr::mutate(hour = lubridate::hour(datetime),
date = lubridate::as_date(datetime),
doy = lubridate::yday(datetime) + hour/24,
longitude = ifelse(longitude < 0, 360 + longitude, longitude),
rpot = downscale_solar_geom(doy, longitude, latitude)) |> # hourly sw flux calculated using solar geometry
dplyr::group_by(site_id, family, ensemble, date, variable) |>
dplyr::mutate(avg.rpot = mean(rpot, na.rm = TRUE),
avg.SW = mean(prediction, na.rm = TRUE))|> # daily sw mean from solar geometry
dplyr::ungroup() |>
dplyr::mutate(prediction = ifelse(variable == "DSWRF" & avg.rpot > 0.0, rpot * (avg.SW/avg.rpot),prediction)) |>
dplyr::select(any_of(var_order))
}

hourly_df <- dplyr::bind_rows(states, fluxes) |>
dplyr::arrange(site_id, family, ensemble, datetime) |>
dplyr::mutate(variable = ifelse(variable == "TMP", "air_temperature", variable),
variable = ifelse(variable == "PRES", "air_pressure", variable),
variable = ifelse(variable == "RH", "relative_humidity", variable),
variable = ifelse(variable == "DLWRF", "surface_downwelling_longwave_flux_in_air", variable),
variable = ifelse(variable == "DSWRF", "surface_downwelling_shortwave_flux_in_air", variable),
variable = ifelse(variable == "PRATE", "precipitation_flux", variable),
variable = ifelse(variable == "VGRD", "eastward_wind", variable),
variable = ifelse(variable == "UGRD", "northward_wind", variable),
variable = ifelse(variable == "APCP", "precipitation_amount", variable),
reference_datetime = reference_datetime) |>
dplyr::select(any_of(var_order))

return(hourly_df)

}

cos_solar_zenith_angle <- function(doy, lat, lon, dt, hr) {
et <- equation_of_time(doy)
merid <- floor(lon / 15) * 15
merid[merid < 0] <- merid[merid < 0] + 15
lc <- (lon - merid) * -4/60 ## longitude correction
tz <- merid / 360 * 24 ## time zone
midbin <- 0.5 * dt / 86400 * 24 ## shift calc to middle of bin
t0 <- 12 + lc - et - tz - midbin ## solar time
h <- pi/12 * (hr - t0) ## solar hour
dec <- -23.45 * pi / 180 * cos(2 * pi * (doy + 10) / 365) ## declination
cosz <- sin(lat * pi / 180) * sin(dec) + cos(lat * pi / 180) * cos(dec) * cos(h)
cosz[cosz < 0] <- 0
return(cosz)
}

equation_of_time <- function(doy) {
stopifnot(doy <= 367)
f <- pi / 180 * (279.5 + 0.9856 * doy)
et <- (-104.7 * sin(f) + 596.2 * sin(2 * f) + 4.3 *
sin(4 * f) - 429.3 * cos(f) - 2 *
cos(2 * f) + 19.3 * cos(3 * f)) / 3600 # equation of time -> eccentricity and obliquity
return(et)
}

downscale_solar_geom <- function(doy, lon, lat) {

dt <- median(diff(doy)) * 86400 # average number of seconds in time interval
hr <- (doy - floor(doy)) * 24 # hour of day for each element of doy

## calculate potential radiation
cosz <- cos_solar_zenith_angle(doy, lat, lon, dt, hr)
rpot <- 1366 * cosz
return(rpot)
}

11 changes: 6 additions & 5 deletions drivers/update_stage3.R
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
library(gdalcubes)
library(gefs4cast)
source("https://raw.githubusercontent.com/eco4cast/neon4cast/main/R/to_hourly.R")
source("drivers/to_hourly.R")

site_list <- readr::read_csv(paste0("https://github.com/eco4cast/usgsrc4cast-ci/",
"raw/prod/USGS_site_metadata.csv"),
show_col_types = FALSE) |>
dplyr::pull(site_id)
show_col_types = FALSE)

Sys.setenv("GEFS_VERSION"="v12")

Expand All @@ -15,7 +14,7 @@ driver_path <- stringr::word(config$driver_bucket, 2, -1, sep = "/")

future::plan("future::multisession", workers = 8)

furrr::future_walk(site_list, function(curr_site_id){
furrr::future_walk(dplyr::pull(site_list, site_id), function(curr_site_id){

print(curr_site_id)

Expand Down Expand Up @@ -50,7 +49,9 @@ furrr::future_walk(site_list, function(curr_site_id){
if(nrow(psuedo_df) > 0){

df2 <- psuedo_df |>
to_hourly(use_solar_geom = TRUE, psuedo = TRUE) |>
to_hourly(site_list = dplyr::select(site_list, site_id, latitude, longitude),
use_solar_geom = TRUE,
psuedo = TRUE) |>
dplyr::mutate(ensemble = as.numeric(stringr::str_sub(ensemble, start = 4, end = 5))) |>
dplyr::rename(parameter = ensemble)

Expand Down
Loading