Skip to content

Commit

Permalink
Merge branch 'develop' into compathelper/new_version/2022-10-08-01-02…
Browse files Browse the repository at this point in the history
…-19-316-01315948050
  • Loading branch information
ZhengLiu1119 authored Dec 5, 2023
2 parents d4e5b3b + f97a1ae commit 6db92e0
Show file tree
Hide file tree
Showing 12 changed files with 1,478 additions and 6 deletions.
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "PandaModels"
uuid = "2dbab86a-7cbf-476f-9afe-75ffd3079e7c"
authors = ["e2nIEE"]
version = "0.7.0"
version = "0.7.2"

[deps]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Expand All @@ -21,7 +21,7 @@ JSON = "0.21"
JuMP = "0.21, 0.22, 1"
Juniper = "0.7, 0.8"
Memento = "1"
PowerModels = "0.18, 0.19"
PowerModels = "0.19.2"
julia = "1.1"

[extras]
Expand Down
7 changes: 4 additions & 3 deletions docs/src/pptutorial.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ Functions from PowerModels:
* [Storage Optimization](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_storage.ipynb)

Functions from PandaModels:
* [Reactive Optimization - maintaining voltage setpoints](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_reactive%20power%20optimization.ipynb)
* [Reactive Optimization - maintaining reactive power setpoints](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_reactive%20power%20optimization.ipynb)
* [Reactive Optimization - active power loss reduction](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_reactive%20power%20optimization.ipynb)
* [Reactive Power Optimization - maintaining voltage setpoints](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_reactive%20power%20optimization.ipynb)
* [Reactive Power Optimization - maintaining reactive power setpoints](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_reactive%20power%20optimization.ipynb)
* [Reactive Power Optimization - active power loss reduction](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_reactive%20power%20optimization.ipynb)
* [Reactive Power Optimization - branch loading reduction](https://github.com/e2nIEE/pandapower/blob/develop/tutorials/pandamodels_reactive%20power%20optimization.ipynb)
4 changes: 3 additions & 1 deletion src/PandaModels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,8 @@ export run_powermodels_pf,
run_pandamodels_ploss,
run_pandamodels_vstab_test,
run_pandamodels_qflex_test,
run_pandamodels_ploss_test
run_pandamodels_ploss_test,
run_pandamodels_loading

include("input/pp_to_pm.jl")
include("input/tools.jl")
Expand All @@ -43,4 +44,5 @@ include("models/call_pandamodels.jl")
include("models/call_powermodels.jl")
include("models/run_pm_vstab_dev.jl")
include("models/run_pm_qflex_dev.jl")
include("models/loading.jl")
end
35 changes: 35 additions & 0 deletions src/models/call_pandamodels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -84,3 +84,38 @@ function run_pandamodels_ploss(json_path)
)
return result
end

function run_pandamodels_loading(json_path)
pm = load_pm_from_json(json_path)
active_powermodels_silence!(pm)
pm = check_powermodels_data!(pm)
model = get_model(pm["pm_model"])
solver = get_solver(pm)

result = _run_loading(
pm,
model,
solver,
setting = Dict("output" => Dict("branch_flows" => true)),
ext = extract_params!(pm),
)
return result
end


function run_pandamodels_custom(json_path)
pm = load_pm_from_json(json_path)
active_powermodels_silence!(pm)
pm = check_powermodels_data!(pm)
model = get_model(pm["pm_model"])
solver = get_solver(pm)

result = _run_custom(
pm,
model,
solver,
setting = Dict("output" => Dict("branch_flows" => true)),
ext = extract_params!(pm),
)
return result
end
197 changes: 197 additions & 0 deletions src/models/create_custom_model.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
function run_pandamodels_qflex_test(json_path) # before run_poweramodels
time_start = time()
###############################################################################
# 0. Initialization
###############################################################################
pm = load_pm_from_json(json_path)
solver = get_solver(pm["pm_solver"], pm["pm_nl_solver"], pm["pm_mip_solver"],
pm["pm_log_level"], pm["pm_time_limit"], pm["pm_nl_time_limit"], pm["pm_mip_time_limit"])
if haskey(pm, "user_defined_params")
user_defined_params = pm["user_defined_params"]
data = delete!(pm, "user_defined_params")
else
data = pm
end

# additional modification
for (i, branch) in pm["branch"]
pm["branch"][i]["angmin"] = -6.28
pm["branch"][i]["angmax"] = 6.28
end

# use build_ref to filter out inactive components
ref = PowerModels.build_ref(data)[:it][:pm][:nw][0]

###############################################################################
# 1. Building the Optimal Power Flow Model
###############################################################################
# Initialize a JuMP Optimization Model
#-------------------------------------
model = JuMP.Model(solver)

# Add voltage angles va for each bus
JuMP.@variable(model, va[i in keys(ref[:bus])])
# note: [i in keys(ref[:bus])] adds one `va` variable for each bus in the network

# Add voltage angles vm for each bus
JuMP.@variable(model, ref[:bus][i]["vmin"] <= vm[i in keys(ref[:bus])] <= ref[:bus][i]["vmax"], start=1.0)
# note: this vairable also includes the voltage magnitude limits and a starting value

# Add active power generation variable pg for each generator (including limits)
JuMP.@variable(model, ref[:gen][i]["pmin"] <= pg[i in keys(ref[:gen])] <= ref[:gen][i]["pmax"], start=ref[:gen][i]["pg"])
# Add reactive power generation variable qg for each generator (including limits)
JuMP.@variable(model, ref[:gen][i]["qmin"] <= qg[i in keys(ref[:gen])] <= ref[:gen][i]["qmax"], start=ref[:gen][i]["qg"])

# Add power flow variables p to represent the active power flow for each branch
JuMP.@variable(model, -ref[:branch][l]["rate_a"] <= p[(l,i,j) in ref[:arcs]] <= ref[:branch][l]["rate_a"])
# Add power flow variables q to represent the reactive power flow for each branch
JuMP.@variable(model, -ref[:branch][l]["rate_a"] <= q[(l,i,j) in ref[:arcs]] <= ref[:branch][l]["rate_a"])
# note: ref[:arcs] includes both the from (i,j) and the to (j,i) sides of a branch

# Add Objective Function
# ----------------------

JuMP.@objective(model, Min, sum((q[(content["element_index"],
content["f_bus"],
content["t_bus"])] - content["value"])^2
for (i, content) in user_defined_params["setpoint_q"]))

# Add Constraints
for (i,bus) in ref[:ref_buses]
JuMP.@constraint(model, va[i] == 0)
end

# Nodal power balance constraints
for (i,bus) in ref[:bus]
# Build a list of the loads and shunt elements connected to the bus i
bus_loads = [ref[:load][l] for l in ref[:bus_loads][i]]
bus_shunts = [ref[:shunt][s] for s in ref[:bus_shunts][i]]

# Active power balance at node i
JuMP.@constraint(model,
sum(p[a] for a in ref[:bus_arcs][i]) + # sum of active power flow on lines from bus i +
sum(p_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) == # sum of active power flow on HVDC lines from bus i =
sum(pg[g] for g in ref[:bus_gens][i]) - # sum of active power generation at bus i -
sum(load["pd"] for load in bus_loads) - # sum of active load consumption at bus i -
sum(shunt["gs"] for shunt in bus_shunts)*vm[i]^2 # sum of active shunt element injections at bus i
)

# Reactive power balance at node i
JuMP.@constraint(model,
sum(q[a] for a in ref[:bus_arcs][i]) + # sum of reactive power flow on lines from bus i +
sum(q_dc[a_dc] for a_dc in ref[:bus_arcs_dc][i]) == # sum of reactive power flow on HVDC lines from bus i =
sum(qg[g] for g in ref[:bus_gens][i]) - # sum of reactive power generation at bus i -
sum(load["qd"] for load in bus_loads) + # sum of reactive load consumption at bus i -
sum(shunt["bs"] for shunt in bus_shunts)*vm[i]^2 # sum of reactive shunt element injections at bus i
)
end

# Branch power flow physics and limit constraints
for (i,branch) in ref[:branch]
# Build the from variable id of the i-th branch, which is a tuple given by (branch id, from bus, to bus)
f_idx = (i, branch["f_bus"], branch["t_bus"])
# Build the to variable id of the i-th branch, which is a tuple given by (branch id, to bus, from bus)
t_idx = (i, branch["t_bus"], branch["f_bus"])
# note: it is necessary to distinguish between the from and to sides of a branch due to power losses

p_fr = p[f_idx] # p_fr is a reference to the optimization variable p[f_idx]
q_fr = q[f_idx] # q_fr is a reference to the optimization variable q[f_idx]
p_to = p[t_idx] # p_to is a reference to the optimization variable p[t_idx]
q_to = q[t_idx] # q_to is a reference to the optimization variable q[t_idx]
# note: adding constraints to p_fr is equivalent to adding constraints to p[f_idx], and so on

vm_fr = vm[branch["f_bus"]] # vm_fr is a reference to the optimization variable vm on the from side of the branch
vm_to = vm[branch["t_bus"]] # vm_to is a reference to the optimization variable vm on the to side of the branch
va_fr = va[branch["f_bus"]] # va_fr is a reference to the optimization variable va on the from side of the branch
va_to = va[branch["t_bus"]] # va_fr is a reference to the optimization variable va on the to side of the branch

# Compute the branch parameters and transformer ratios from the data
g, b = PowerModels.calc_branch_y(branch)
tr, ti = PowerModels.calc_branch_t(branch)
g_fr = branch["g_fr"]
b_fr = branch["b_fr"]
g_to = branch["g_to"]
b_to = branch["b_to"]
tm = branch["tap"]^2
# note: tap is assumed to be 1.0 on non-transformer branches


# AC Power Flow Constraints

# From side of the branch flow
JuMP.@NLconstraint(model, p_fr == (g+g_fr)/tm*vm_fr^2 + (-g*tr+b*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-b*tr-g*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )
JuMP.@NLconstraint(model, q_fr == -(b+b_fr)/tm*vm_fr^2 - (-b*tr-g*ti)/tm*(vm_fr*vm_to*cos(va_fr-va_to)) + (-g*tr+b*ti)/tm*(vm_fr*vm_to*sin(va_fr-va_to)) )

# To side of the branch flow
JuMP.@NLconstraint(model, p_to == (g+g_to)*vm_to^2 + (-g*tr-b*ti)/tm*(vm_to*vm_fr*cos(va_to-va_fr)) + (-b*tr+g*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )
JuMP.@NLconstraint(model, q_to == -(b+b_to)*vm_to^2 - (-b*tr+g*ti)/tm*(vm_to*vm_fr*cos(va_fr-va_to)) + (-g*tr-b*ti)/tm*(vm_to*vm_fr*sin(va_to-va_fr)) )

# Voltage angle difference limit
JuMP.@constraint(model, va_fr - va_to <= branch["angmax"])
JuMP.@constraint(model, va_fr - va_to >= branch["angmin"])

# Apparent power limit, from side and to side
JuMP.@constraint(model, p_fr^2 + q_fr^2 <= branch["rate_a"]^2)
JuMP.@constraint(model, p_to^2 + q_to^2 <= branch["rate_a"]^2)
end


###############################################################################
# 3. Solve the Optimal Power Flow Model and Review the Results
###############################################################################
JuMP.optimize!(model)

###############################################################################
# 4. Create Result Dictionary such that the PowerModels Results can be used by pandapower
###############################################################################
solution = Dict{String,Any}()
push!(solution, "baseMVA" => data["baseMVA"])
push!(solution, "per_unit" => data["per_unit"])
push!(solution, "gen" => data["gen"])
push!(solution, "bus" => data["bus"])
push!(solution, "branch" => data["branch"])
push!(solution, "multinetwork" => false)
push!(solution, "multiinfrastructrue" => false)

for (i, gen) in solution["gen"]
index = gen["index"]
gen["qg"] = value(model[:qg][index])
gen["pg"] = value(model[:pg][index])
end

for (i, bus) in solution["bus"]
index = bus["index"]
bus["vm"] = value(model[:vm][index])
bus["va"] = value(model[:va][index])
end

for (i, branch) in solution["branch"]
index = branch["index"]
push!(branch, "qf" => value(model[:q][(index, branch["f_bus"], branch["t_bus"])]))
push!(branch, "qt" => value(model[:q][(index, branch["t_bus"], branch["f_bus"])]))
push!(branch, "pf" => value(model[:p][(index, branch["f_bus"], branch["t_bus"])]))
push!(branch, "pt" => value(model[:p][(index, branch["t_bus"], branch["f_bus"])]))
end
println("The solver termination status is")

result = Dict{String,Any}(
"optimizer" => JuMP.solver_name(model),
"termination_status" => JuMP.termination_status(model), # "LOCALLY_SOLVED",
"primal_status" => JuMP.primal_status(model),
"dual_status" => JuMP.dual_status(model),
"objective" => InfrastructureModels._guard_objective_value(model),
"objective_lb" => InfrastructureModels._guard_objective_bound(model),
"solve_time" => solve_time,
"solution" => solution)

return result
end


# json_path = "C:/Users/fmeier/pandapower/pandapower/test/opf/case5_clm_matfile_va.json"
# # #@enter run_powermodels(json_path)
# #
# result = run_powermodels(json_path)
# println(result["termination_status"] == LOCALLY_SOLVED)
# println(isapprox(result["objective"], 17015.5; atol = 1e0))
# mit eingeschränkter slack spannung: 17082.819507648066
52 changes: 52 additions & 0 deletions src/models/custom.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
export _run_custom

"""
run custom optimization
"""

function _run_custom(file, model_type::_PM.Type, optimizer; kwargs...)
return _PM.solve_model(file, model_type, optimizer, _build_custom; kwargs...)
end

"""
give a JuMP model with PowerModels network data structur and build opitmization model
"""

function _build_custom(pm::_PM.AbstractPowerModel)

_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm)
_PM.variable_branch_power(pm)
_PM.variable_dcline_power(pm, bounded = false) # TODO: why false?

objective_custom(pm)

_PM.constraint_model_voltage(pm)

for i in _PM.ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i)
end

for i in _PM.ids(pm, :bus)
_PM.constraint_power_balance(pm, i)
end

for (i, branch) in _PM.ref(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i)
_PM.constraint_ohms_yt_to(pm, i)

_PM.constraint_thermal_limit_from(pm, i)
_PM.constraint_thermal_limit_to(pm, i)
end

for i in _PM.ids(pm, :dcline)
_PM.constraint_dcline_power_losses(pm, i)
end
end

function objective_custom(pm::_PM.AbstractPowerModel)

return JuMP.@objective(pm.model, Min, sum((var(pm, :q, (content["element_index"], content["f_bus"], content["t_bus"])) - content["value"])^2
for (i, content) in pm.ext[:setpoint_q]))
end

7 changes: 7 additions & 0 deletions src/models/load_custom_pm.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
using PandaModels; const _PdM = PandaModels
import PowerModels; const _PM = PowerModels

json_path = "C:\\Users\\zliu\\.julia\\dev\\PandaModels\\test\\data\\test_custom.json" # path of the json file
pm = _PdM.load_pm_from_json(json_path)
user_defined_params = pm["user_defined_params"]
print(debug)
Loading

0 comments on commit 6db92e0

Please sign in to comment.