Skip to content

Latest commit

 

History

History

train

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Training ENet

This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

Currently the network can be trained on three datasets:

Datasets Input Resolution Output Resolution^ # of classes
CamVid 480x360 60x45 11
Cityscapes 1024x512 128x64 19
SUN RGBD 256x200 32x25 37

^ is the encoder output resolution; decoder output resolution is the same as that of the input image. Folder arrangement of the datasets compatible with our data-loader has been explained in detail here.

Files/folders and their usage:

  • run.lua : main file
  • opts.lua : contains all the input options used by the tranining script
  • data : data loaders for loading datasets
  • models : all the model architectures are defined here
  • train.lua : loading of models and error calculation
  • test.lua : calculate testing error and save confusion matrices

Example command for training encoder:

th run.lua --dataset cs --datapath /Cityscapes/dataset/path/ --model models/encoder.lua --save /save/trained/model/ --imHeight 256 --imWidth 512 --labelHeight 32 --labelWidth 64

Example command for training decoder:

th run.lua --dataset cs --datapath /Cityscape/dataset/path/ --model models/decoder.lua --imHeight 256 --imWidth 512 --labelHeight 256 --labelWidth 512

Use cachepath option to save your loaded dataset in .t7 format so that you won't have to load it again from scratch.