Skip to content

Commit

Permalink
Merge branch 'pde_optimization' of https://github.com/dynamicslab/pys…
Browse files Browse the repository at this point in the history
…indy into pde_optimization
  • Loading branch information
Alan Kaptanoglu authored and Alan Kaptanoglu committed Jan 6, 2022
2 parents 2d1567f + 889496b commit fd4befd
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 5 deletions.
8 changes: 4 additions & 4 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ If you use PySINDy in your work, please cite it using the following two referenc

Brian M. de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Nathan Kutz, and Steven L. Brunton., (2020). *PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data.* Journal of Open Source Software, 5(49), 2104, https://doi.org/10.21105/joss.02104

Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Jared L. Callaham, Charles B. Delahunt, Kathleen Champion, Jean-Christophe Loiseau,J. Nathan Kutz, and Steven L. Brunton. *PySINDy: A comprehensive Python packagefor robust sparse system identification.* arXiv preprint arXiv:2111.08481, 2021.
Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Jared L. Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe Loiseau,J. Nathan Kutz, and Steven L. Brunton. *PySINDy: A comprehensive Python packagefor robust sparse system identification.* arXiv preprint arXiv:2111.08481, 2021.

Bibtex:

Expand All @@ -240,7 +240,7 @@ Bibtex:
@article{kaptanoglu2021pysindy,
title={PySINDy: A comprehensive Python package for robust sparse system identification},
author={Alan A. Kaptanoglu and Brian M. de Silva and Urban Fasel and Kadierdan Kaheman and Jared L. Callaham and Charles B. Delahunt and Kathleen Champion and Jean-Christophe Loiseau and J. Nathan Kutz and Steven L. Brunton},
author={Alan A. Kaptanoglu and Brian M. de Silva and Urban Fasel and Kadierdan Kaheman and Jared L. Callaham and Charles B. Delahunt and Zachary G. Nicolaou and Kathleen Champion and Jean-Christophe Loiseau and J. Nathan Kutz and Steven L. Brunton},
year={2021},
Journal = {arXiv preprint arXiv:2111.08481},
}
Expand All @@ -254,8 +254,8 @@ References
`[arXiv] <https://arxiv.org/abs/2004.08424>`__

- Kaptanoglu, Alan A., Brian M. de Silva, Urban Fasel, Kadierdan Kaheman,
Jared L. Callaham, Charles B. Delahunt, Kathleen Champion, Jean-Christophe Loiseau,
J. Nathan Kutz, and Steven L. Brunton.
Jared L. Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion,
Jean-Christophe Loiseau, J. Nathan Kutz, and Steven L. Brunton.
*PySINDy: A comprehensive Python package for robust sparse system identification.*
arXiv preprint arXiv:2111.08481 (2021).
`[arXiv] <https://arxiv.org/abs/2111.08481>`__
Expand Down
4 changes: 3 additions & 1 deletion docs/JOSS2/paper.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ authors:
affiliation: 3
- name: Charles B. Delahunt
affiliation: 2
- name: Zachary G. Nicolaou
affiliation: 2
- name: Kathleen Champion
affiliation: 2
- name: Jean-Christophe Loiseau
Expand Down Expand Up @@ -81,7 +83,7 @@ Recent variants of the SINDy method are available that address systems with cont
In order to incorporate these new developments and accommodate the wide variety of possible dynamical systems, we have extended `PySINDy` to a more general setting and added significant new functionality. Our code\footnote{\url{https://github.com/dynamicslab/pysindy}} is thoroughly documented, contains extensive examples, and integrates a wide range of functionality, some of which may be found in a number of other local SINDy implementations\footnote{\url{https://github.com/snagcliffs/PDE-FIND}, \url{https://github.com/eurika-kaiser/SINDY-MPC},\\ \url{https://github.com/dynamicslab/SINDy-PI}, \url{https://github.com/SchatzLabGT/SymbolicRegression},\\ \url{https://github.com/dynamicslab/databook_python}, \url{https://github.com/sheadan/SINDy-BVP},\\ \url{https://github.com/sethhirsh/BayesianSindy}, \url{https://github.com/racdale/sindyr},\\ \url{https://github.com/SciML/DataDrivenDiffEq.jl}, \url{https://github.com/MathBioCU/WSINDy_PDE},\\ \url{https://github.com/pakreinbold/PDE_Discovery_Weak_Formulation}, \url{https://github.com/ZIB-IOL/CINDy}}. In contrast to some of these existing implementations, `PySINDy` is completely open-source, professionally-maintained (for instance, providing unit tests and adhering to PEP8 stylistic standards), and minimally dependent on non-standard Python packages.

# New features
Given spatiotemporal data $\mathbf{Q}(\mathbf{x}, t) \in \mathbb{R}^{m\times n}$, and optional control inputs $\mathbf{u} \in \mathbb{R}^{m \times r}$ (note $m$ has been redefined here to be the product of the number of spatial measurements and the number of time samples), `PySINDy` can now approximate algebraic systems of PDEs (and corresponding weak forms) in up to 3 spatial dimensions. Assuming the system is described by a function $\mathbf{g}$, we have
Given spatiotemporal data $\mathbf{Q}(\mathbf{x}, t) \in \mathbb{R}^{m\times n}$, and optional control inputs $\mathbf{u} \in \mathbb{R}^{m \times r}$ (note $m$ has been redefined here to be the product of the number of spatial measurements and the number of time samples), `PySINDy` can now approximate algebraic systems of PDEs (and corresponding weak forms) in an arbitrary number of spatial dimensions. Assuming the system is described by a function $\mathbf{g}$, we have
\begin{equation}\label{eq:pysindy_eq}
\mathbf{g}(\mathbf{q},\mathbf q_t, \mathbf q_x, \mathbf q_y, \mathbf q_{xx}, ..., \mathbf{u}) = 0.
\end{equation}
Expand Down

0 comments on commit fd4befd

Please sign in to comment.