-
Notifications
You must be signed in to change notification settings - Fork 328
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added Joes example as python script that can be run on lambda and doe…
…s some parameter scans.
- Loading branch information
Showing
1 changed file
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
import random | ||
import time | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import optax | ||
from jax.experimental.ode import odeint | ||
|
||
|
||
# Define a hankel matrix | ||
def multi_hankel_matrix2(x, n_tsteps): | ||
""" | ||
x: (n_dim, time_steps) solution | ||
n_tsteps: number of time steps to integrate solution | ||
returns H, a (n_tsteps, n_dim, n_examples) hankel-like matrix | ||
""" | ||
|
||
n_dim = x.shape[1] | ||
n_examples = x.shape[0] - n_tsteps | ||
H = np.zeros((n_tsteps, n_dim, n_examples)) | ||
for i in range(n_dim): | ||
for j in range(n_tsteps): | ||
H[j, i, :] = x[j : j + n_examples, i] | ||
|
||
return jnp.array(H) | ||
|
||
|
||
# Simulate lorenz system | ||
# @jax.jit | ||
def lorenz_system(X, t, theta): | ||
""" | ||
Defines the dynamical system as a function of the state vector x, time t, and | ||
model parameters theta. | ||
""" | ||
# Define the differential equation | ||
dx_dt = theta[0] * (X[1] - X[0]) | ||
dy_dt = X[0] * (theta[1] - X[2]) - X[1] | ||
dz_dt = X[0] * X[1] - theta[2] * X[2] | ||
return jnp.array([dx_dt, dy_dt, dz_dt]) | ||
|
||
|
||
def cost_function(system, data, theta, ntime, t, l1param=None): | ||
# Integrate the system forward in time and evaluate loss | ||
n_tsteps = data.shape[0] | ||
n_examples = ntime | ||
t_pred = t[:n_tsteps] | ||
x0 = data[0, :, :] | ||
print("data shape = ", data.shape) | ||
print("n_tsteps * n_examples = ", n_tsteps * n_examples) | ||
|
||
# Solve system ODE with parameters theta, initial condition x0, and time t_pred | ||
x = odeint(system, x0, t_pred, theta) | ||
loss = jnp.sum((x - data) ** 2) / n_examples / n_tsteps | ||
|
||
if l1param is not None: | ||
# compute l1 norm of theta (regularization) | ||
loss += l1param * jnp.sum(jnp.abs(theta)) | ||
|
||
return loss | ||
|
||
|
||
x0 = jnp.array([1.0, 1.0, 1.0]) | ||
for ntime in [1000, 10000]: | ||
t = jnp.linspace(0, 20, ntime) | ||
sol = odeint(lorenz_system, x0, t, (10, 28, 8 / 3)) | ||
sys_cost_function = lambda H, coefs: cost_function( | ||
lorenz_system, H, coefs, l1param=0.0, ntime=ntime, t=t | ||
) | ||
|
||
for n_tstep in [2, 10, 100]: | ||
print("ntime, n_tstep = ", ntime, n_tstep) | ||
H = multi_hankel_matrix2(sol, n_tstep) | ||
cf_jit = jax.jit(sys_cost_function) | ||
|
||
# optimization parameters | ||
epochs = 4000 | ||
learning_rate = 0.2 | ||
|
||
# Define the optimizer | ||
optimizer = optax.adam(learning_rate) | ||
|
||
# Initialize the parameters | ||
params = {"theta": jnp.array([0.0, 0.0, 0.0])} | ||
|
||
# Initialize the optimizer | ||
opt_state = optimizer.init(params) | ||
|
||
# Define the loss function | ||
# compute_loss = lambda params, data: cost_function(lorenz_system, data, params['theta'], l1param=0.01) | ||
|
||
# Define the loss function | ||
compute_loss = lambda params, data: cf_jit(data, params["theta"]) | ||
cl_jit = jax.jit(compute_loss) | ||
grads_jit = jax.jit(jax.grad(cl_jit)) | ||
|
||
train_ratio = 0.1 | ||
nsamp = H.shape[2] | ||
batch = max(1, int(train_ratio * nsamp)) | ||
print("batch = ", batch) | ||
|
||
print_iter = 50 | ||
loss = np.zeros(epochs // print_iter) | ||
t1 = time.time() | ||
for i in range(epochs): | ||
|
||
# Take subsample of H | ||
idxs = random.sample(range(nsamp), batch) | ||
Hsub = H[:, :, idxs] | ||
|
||
# Update the parameters | ||
grads = grads_jit(params, Hsub) | ||
updates, opt_state = optimizer.update(grads, opt_state) | ||
params = optax.apply_updates(params, updates) | ||
|
||
if i % print_iter == 0: | ||
print("Epoch: ", i) | ||
print("params: ", params["theta"]) | ||
loss[i // print_iter] = cl_jit(params, Hsub) | ||
print("Loss :", loss[i // print_iter]) | ||
print("-------") | ||
|
||
t2 = time.time() | ||
print("Final params: ", params["theta"]) | ||
print("Total optimization time = ", t2 - t1) | ||
plt.figure(2) | ||
plt.semilogy( | ||
np.arange(0, epochs, print_iter), | ||
loss, | ||
"o", | ||
label="ntime = " + str(ntime) + ", n_tstep = " + str(n_tstep), | ||
) | ||
plt.grid(True) | ||
plt.xlabel("iterations") | ||
plt.ylabel("objective") | ||
plt.legend() | ||
plt.figure(3) | ||
plt.semilogy( | ||
t2 - t1, | ||
loss[-1], | ||
"o", | ||
label="ntime = " + str(ntime) + ", n_tstep = " + str(n_tstep), | ||
) | ||
plt.grid(True) | ||
plt.xlabel("t (s)") | ||
plt.ylabel("objective") | ||
plt.legend() | ||
plt.show() |