Skip to content

Commit

Permalink
CLN: Annotate and flatten function creating projection tensors
Browse files Browse the repository at this point in the history
Also: Rename single-letter variable to meaningful
  • Loading branch information
Jacob-Stevens-Haas committed Nov 9, 2023
1 parent 3e6d4fa commit 6af6e4c
Show file tree
Hide file tree
Showing 3 changed files with 33 additions and 43 deletions.
72 changes: 32 additions & 40 deletions pysindy/optimizers/trapping_sr3.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
import warnings
from itertools import combinations_with_replacement as combo_wr
from itertools import product
from typing import Tuple

import cvxpy as cp
import numpy as np
Expand Down Expand Up @@ -223,39 +226,28 @@ def __init__(
self.accel = accel
self.objective_history = objective_history

def _set_Ptensors(self, r):
def _set_Ptensors(
self, n_targets: int
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Make the projection tensors used for the algorithm."""
N = int((r**2 + 3 * r) / 2.0)
N = int((n_targets**2 + 3 * n_targets) / 2.0)

# delta_{il}delta_{jk}
PL_tensor = np.zeros((r, r, r, N))
PL_tensor_unsym = np.zeros((r, r, r, N))
for i in range(r):
for j in range(r):
for k in range(r):
for kk in range(N):
if i == k and j == kk:
PL_tensor_unsym[i, j, k, kk] = 1.0
PL_tensor_unsym = np.zeros((n_targets, n_targets, n_targets, N))
for i, j in combo_wr(range(n_targets), 2):
PL_tensor_unsym[i, j, i, j] = 1.0

# Now symmetrize PL
for i in range(r):
for j in range(N):
PL_tensor[:, :, i, j] = 0.5 * (
PL_tensor_unsym[:, :, i, j] + PL_tensor_unsym[:, :, i, j].T
)
PL_tensor = (PL_tensor_unsym + np.transpose(PL_tensor_unsym, [1, 0, 2, 3])) / 2

# if j == k, delta_{il}delta_{N-r+j,n}
# if j != k, delta_{il}delta_{r+j+k-1,n}
PQ_tensor = np.zeros((r, r, r, r, N))
for i in range(r):
for j in range(r):
for k in range(r):
for kk in range(r):
for n in range(N):
if (j == k) and (n == N - r + j) and (i == kk):
PQ_tensor[i, j, k, kk, n] = 1.0
if (j != k) and (n == r + j + k - 1) and (i == kk):
PQ_tensor[i, j, k, kk, n] = 1 / 2
PQ_tensor = np.zeros((n_targets, n_targets, n_targets, n_targets, N))
for (i, j, k, kk), n in product(combo_wr(range(n_targets), 4), range(N)):
if (j == k) and (n == N - n_targets + j) and (i == kk):
PQ_tensor[i, j, k, kk, n] = 1.0
if (j != k) and (n == n_targets + j + k - 1) and (i == kk):
PQ_tensor[i, j, k, kk, n] = 1 / 2

return PL_tensor_unsym, PL_tensor, PQ_tensor

Expand Down Expand Up @@ -511,14 +503,14 @@ def _reduce(self, x, y):
self.PWeigs_history_ = []
self.history_ = []
n_samples, n_features = x.shape
r = y.shape[1]
N = int((r**2 + 3 * r) / 2.0)
n_tgts = y.shape[1]
N = int((n_tgts**2 + 3 * n_tgts) / 2.0)

# Define PL and PQ tensors, only relevant if the stability term in
# trapping SINDy is turned on.
self.PL_unsym_, self.PL_, self.PQ_ = self._set_Ptensors(r)
self.PL_unsym_, self.PL_, self.PQ_ = self._set_Ptensors(n_tgts)
# make sure dimensions/symmetries are correct
self._check_P_matrix(r, n_features, N)
self._check_P_matrix(n_tgts, n_features, N)

# Set initial coefficients
if self.use_constraints and self.constraint_order.lower() == "target":
Expand All @@ -544,24 +536,24 @@ def _reduce(self, x, y):
if self.A0 is not None:
A = self.A0
elif np.any(self.PQ_ != 0.0):
A = np.diag(self.gamma * np.ones(r))
A = np.diag(self.gamma * np.ones(n_tgts))
else:
A = np.diag(np.zeros(r))
A = np.diag(np.zeros(n_tgts))
self.A_history_.append(A)

# initial guess for m
if self.m0 is not None:
m = self.m0
else:
np.random.seed(1)
m = (np.random.rand(r) - np.ones(r)) * 2
m = (np.random.rand(n_tgts) - np.ones(n_tgts)) * 2
self.m_history_.append(m)

# Precompute some objects for optimization
x_expanded = np.zeros((n_samples, r, n_features, r))
for i in range(r):
x_expanded = np.zeros((n_samples, n_tgts, n_features, n_tgts))
for i in range(n_tgts):
x_expanded[:, i, :, i] = x
x_expanded = np.reshape(x_expanded, (n_samples * r, r * n_features))
x_expanded = np.reshape(x_expanded, (n_samples * n_tgts, n_tgts * n_features))
xTx = np.dot(x_expanded.T, x_expanded)
xTy = np.dot(x_expanded.T, y.flatten())

Expand All @@ -576,22 +568,22 @@ def _reduce(self, x, y):
# update P tensor from the newest m
mPQ = np.tensordot(m, self.PQ_, axes=([0], [0]))
p = self.PL_ - mPQ
Pmatrix = p.reshape(r * r, r * n_features)
Pmatrix = p.reshape(n_tgts * n_tgts, n_tgts * n_features)

# update w
coef_prev = coef_sparse
if self.evolve_w:
if self.relax_optim:
if self.threshold > 0.0:
xi, cost = self._create_var_and_part_cost(
n_features * r, x_expanded, y
n_features * n_tgts, x_expanded, y
)
cost = (
cost + cp.sum_squares(Pmatrix @ xi - A.flatten()) / self.eta
)
# sparse relax_and_split
coef_sparse = self._update_coef_cvxpy(
xi, cost, r * n_features, coef_prev, self.eps_solver
xi, cost, n_tgts * n_features, coef_prev, self.eps_solver
)
else:
pTp = np.dot(Pmatrix.T, Pmatrix)
Expand All @@ -602,7 +594,7 @@ def _reduce(self, x, y):
)
else:
m, coef_sparse = self._solve_direct_cvxpy(
r, n_features, x_expanded, y, Pmatrix, coef_prev
n_tgts, n_features, x_expanded, y, Pmatrix, coef_prev
)

# If problem over xi becomes infeasible, break out of the loop
Expand All @@ -612,7 +604,7 @@ def _reduce(self, x, y):

if self.relax_optim:
m_prev, m, A, tk_prev = self._solve_m_relax_and_split(
r, n_features, m_prev, m, A, coef_sparse, tk_prev
n_tgts, n_features, m_prev, m, A, coef_sparse, tk_prev
)

# If problem over m becomes infeasible, break out of the loop
Expand Down
2 changes: 0 additions & 2 deletions test/test_optimizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -483,7 +483,6 @@ def test_trapping_sr3_quadratic_library(params, trapping_sr3_params, quadratic_l

opt = TrappingSR3(**params)
opt.fit(features, x_dot)
assert opt.PL_unsym_.shape == (1, 1, 1, 2)
assert opt.PL_.shape == (1, 1, 1, 2)
assert opt.PQ_.shape == (1, 1, 1, 1, 2)
check_is_fitted(opt)
Expand All @@ -497,7 +496,6 @@ def test_trapping_sr3_quadratic_library(params, trapping_sr3_params, quadratic_l

opt = TrappingSR3(**params)
opt.fit(features, x_dot)
assert opt.PL_unsym_.shape == (1, 1, 1, 2)
assert opt.PL_.shape == (1, 1, 1, 2)
assert opt.PQ_.shape == (1, 1, 1, 1, 2)
check_is_fitted(opt)
Expand Down
2 changes: 1 addition & 1 deletion test/test_optimizers_complexity.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def test_complexity_parameter(

optimizers = [
WrappedOptimizer(opt_cls(**{reg_name: reg_value}), normalize_columns=True)
for reg_value in [10, 1, 0.1, 0.01]
for reg_value in [10, 1, 0.1, 0.001]
]

for opt in optimizers:
Expand Down

0 comments on commit 6af6e4c

Please sign in to comment.