Skip to content
/ ABSC Public
forked from NUSTM/ABSC

aspect-based sentiment classification

Notifications You must be signed in to change notification settings

dwykat/ABSC

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

Aspect-based Sentiment Classification

Introduction

We provide our implementations of some state-of-the-art ABSC models.

Related Papers

  1. Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. Effective LSTMs for Target-Dependent Sentiment Classification with Long Short Term Memory. COLING 2016.

  2. Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan Zhu. Attention-based LSTM for Aspect-level Sentiment Classification. EMNLP 2016.

  3. Duyu Tang, Bing Qin, and Ting Liu. Aspect Level Sentiment Classification with Deep Memory Network. EMNLP 2016.

  4. Meishan Zhang, Yue Zhang, and Duy-Tin Vo. Gated Neural Networks for Targeted Sentiment Analysis. AAAI 2016.

  5. Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Interactive Attention Networks for Aspect-Level Sentiment Classification. IJCAI 2017.

  6. Peng Chen, Zhongqian Sun, Lidong Bing, and Wei Yang. Recurrent Attention Network on Memory for Aspect Sentiment Analysis. EMNLP 2017.

  7. Shiliang Zheng, Rui Xia. Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention. https://arxiv.org/abs/1802.00892.

  8. Li, X.; Bing, L.; Lam, W.; and Shi, B. 2018. Transformation networks for target-oriented sentiment classification. ACL 2018.

About

aspect-based sentiment classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%