-
Notifications
You must be signed in to change notification settings - Fork 118
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Added strategy option to use mdi as measure * Removed mdi strategy * Added classes for both unawareness strategies * Docstring cleanup * Deleted old unawareness class * Fixed correlation suppression
- Loading branch information
Showing
2 changed files
with
160 additions
and
58 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
137 changes: 137 additions & 0 deletions
137
src/aequitas/flow/methods/preprocessing/feature_importance_suppression.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
from typing import Optional | ||
|
||
import pandas as pd | ||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.metrics import roc_auc_score | ||
|
||
from ...utils import create_logger | ||
from .preprocessing import PreProcessing | ||
|
||
|
||
class FeatureImportanceSuppression(PreProcessing): | ||
def __init__( | ||
self, | ||
auc_threshold: Optional[int] = 0.5, | ||
feature_importance_threshold: Optional[float] = 0.1, | ||
n_estimators: Optional[int] = 10, | ||
seed: int = 0, | ||
): | ||
"""Iterively removes the most important features with respect to the sensitive | ||
attribute. | ||
Parameters | ||
---------- | ||
auc_threshold : int, optional | ||
The value of AUC above which the removal of features continues. Defaults to | ||
0.5. | ||
feature_importance_threshold : float, optional | ||
The value of feature importance above which the most important feature needs | ||
to have to be removed. Defaults to 0.1. | ||
n_estimators : int, optional | ||
The number of trees in the random forest. Defaults to 10. | ||
seed : int, optional | ||
The seed for the random forest. Defaults to 0. | ||
""" | ||
self.logger = create_logger( | ||
"methods.preprocessing.FeatureImportanceSuppression" | ||
) | ||
self.logger.info( | ||
"Instantiating a FeatureImportanceSuppression preprocessing method." | ||
) | ||
self.used_in_inference = True | ||
|
||
self.auc_threshold = auc_threshold | ||
self.feature_importance_threshold = feature_importance_threshold | ||
self.n_estimators = n_estimators | ||
self.seed = seed | ||
|
||
def fit(self, X: pd.DataFrame, y: pd.Series, s: Optional[pd.Series]) -> None: | ||
"""Iteratively removes the most important features to predict the sensitive | ||
attribute. | ||
Parameters | ||
---------- | ||
X : pandas.DataFrame | ||
Feature matrix. | ||
y : pandas.Series | ||
Label vector. | ||
s : pandas.Series | ||
Protected attribute vector. | ||
""" | ||
super().fit(X, y, s) | ||
|
||
self.logger.info("Identifying features to remove.") | ||
|
||
rf = RandomForestClassifier( | ||
n_estimators=self.n_estimators, random_state=self.seed | ||
) | ||
|
||
features = pd.concat([X, y], axis=1) | ||
features = pd.get_dummies(features) | ||
target = s.copy() | ||
|
||
features_train, features_val, target_train, target_val = train_test_split( | ||
features, target | ||
) | ||
self.remove_features = [] | ||
|
||
while features_train.shape[1] > 1: | ||
rf.fit(features_train, target_train) | ||
predictions = rf.predict_proba(features_val)[:, 1] | ||
auc = roc_auc_score(target_val, predictions) | ||
|
||
if auc > self.auc_threshold: | ||
scores = pd.Series( | ||
rf.feature_importances_, index=features_train.columns | ||
) | ||
feature = scores.sort_values(ascending=False).index[0] | ||
if scores[feature] < self.feature_importance_threshold: | ||
break | ||
|
||
i = feature.rfind("_") | ||
if feature[:i] in X.columns: | ||
eliminate = [ | ||
col | ||
for col in features_train.columns | ||
if col.startswith(feature[:i]) | ||
] | ||
self.remove_features.append(feature[:i]) | ||
else: | ||
eliminate = [feature] | ||
self.remove_features.append(feature) | ||
|
||
features_train = features_train.drop(columns=eliminate) | ||
features_val = features_val.drop(columns=eliminate) | ||
else: | ||
break | ||
|
||
def transform( | ||
self, X: pd.DataFrame, y: pd.Series, s: Optional[pd.Series] = None | ||
) -> tuple[pd.DataFrame, pd.Series, pd.Series]: | ||
"""Removes the features which are related with the sensitive attribute the most | ||
from the data. | ||
Parameters | ||
---------- | ||
X : pd.DataFrame | ||
Feature matrix. | ||
y : pd.Series | ||
Label vector. | ||
s : pd.Series, optional | ||
Protected attribute vector. | ||
Returns | ||
------- | ||
tuple[pd.DataFrame, pd.Series, pd.Series] | ||
The transformed input, X, y, and s. | ||
""" | ||
super().transform(X, y, s) | ||
|
||
self.logger.info( | ||
f"Removing most correlated features with sensitive attribute: " | ||
f"{self.remove_features}" | ||
) | ||
X_transformed = X.drop(columns=self.remove_features) | ||
|
||
return X_transformed, y, s |