Skip to content

[arXiv 2024] L2CL: Embarrassingly Simple Layer-to-Layer Contrastive Learning for Graph Collaborative Filtering

Notifications You must be signed in to change notification settings

downeykking/L2CL

Repository files navigation

L2CL: Embarrassingly Simple Layer-to-Layer Contrastive Learning for Graph Collaborative Filtering

Requirements

python>=3.9.18
pytorch>=1.13.1
torch-geometric>=2.4.0
torch-sparse>=0.6.17+pt113cu117
numpy>=1.26.1
pandas>=2.1.2
CUDA 11.7

Installation

conda create -n L2CL python=3.9
conda activate L2CL

pip install torch==1.13.1+cu117 -f https://download.pytorch.org/whl/torch/
pip install torch-sparse==0.6.17 -f https://pytorch-geometric.com/whl/torch-1.13.1+cu117.html
pip install torch-scatter==2.1.1 -f https://pytorch-geometric.com/whl/torch-1.13.1+cu117.html
pip install torch-geometric
pip install -r requirements.txt

Dataset

Datasets #Users #Items #Interactions Density
Kindle 60,468 57,212 880,859 0.00025
Yelp 45,477 30,708 1,777,765 0.00127
Books 58,144 58,051 2,517,437 0.00075
QB-video 30,323 25,730 1,581,136 0.00203

For amazon-kindle-store, yelp, amazon-books, they will be automatically downloaded via RecBole once you run the main program.

For QB-video, we provide it under dataset/

cd dataset
unzip QB-video.zip

Reproduction

We integrate our L2CL method into the RecBole and RecoBole-GNN framework.

You can reproduct our experiment results through below instructions:

Amazon-kindle-store

bash scripts/run_kindle.sh

Yelp

bash scripts/run_yelp.sh

Amazon-books

bash scripts/run_books.sh

QB-video

bash scripts/run_video.sh

About

[arXiv 2024] L2CL: Embarrassingly Simple Layer-to-Layer Contrastive Learning for Graph Collaborative Filtering

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages