python>=3.9.18
pytorch>=1.13.1
torch-geometric>=2.4.0
torch-sparse>=0.6.17+pt113cu117
numpy>=1.26.1
pandas>=2.1.2
CUDA 11.7
conda create -n L2CL python=3.9
conda activate L2CL
pip install torch==1.13.1+cu117 -f https://download.pytorch.org/whl/torch/
pip install torch-sparse==0.6.17 -f https://pytorch-geometric.com/whl/torch-1.13.1+cu117.html
pip install torch-scatter==2.1.1 -f https://pytorch-geometric.com/whl/torch-1.13.1+cu117.html
pip install torch-geometric
pip install -r requirements.txt
Datasets | #Users | #Items | #Interactions | Density |
---|---|---|---|---|
Kindle | 60,468 | 57,212 | 880,859 | 0.00025 |
Yelp | 45,477 | 30,708 | 1,777,765 | 0.00127 |
Books | 58,144 | 58,051 | 2,517,437 | 0.00075 |
QB-video | 30,323 | 25,730 | 1,581,136 | 0.00203 |
For amazon-kindle-store
, yelp
, amazon-books
, they will be automatically downloaded via RecBole once you run the main program.
For QB-video
, we provide it under dataset/
cd dataset
unzip QB-video.zip
We integrate our L2CL method into the RecBole and RecoBole-GNN framework.
You can reproduct our experiment results through below instructions:
bash scripts/run_kindle.sh
bash scripts/run_yelp.sh
bash scripts/run_books.sh
bash scripts/run_video.sh