-
Notifications
You must be signed in to change notification settings - Fork 505
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add cookbook to run Outlines with BentoML and BentoCloud
- Loading branch information
Showing
7 changed files
with
343 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
# Run Outlines using BentoML | ||
|
||
[BentoML](https://github.com/bentoml/BentoML) is an open-source model serving library for building performant and scalable AI applications with Python. It comes with tools that you need for serving optimization, model packaging, and production deployment. | ||
|
||
In this guide, we will show you how to use BentoML to run programs written with Outlines on GPU locally and in [BentoCloud](https://www.bentoml.com/), an AI Inference Platform for enterprise AI teams. The example source code in this guide is also available in the [examples/bentoml/](https://github.com/outlines-dev/outlines/blob/main/examples/bentoml/) directory. | ||
|
||
## Import a model | ||
|
||
First we need to download an LLM (Mistral-7B-v0.1 in this example and you can use any other LLM) and import the model into BentoML's [Model Store](https://docs.bentoml.com/en/latest/guides/model-store.html). Let's install BentoML and other dependencies from PyPi (preferably in a virtual environment): | ||
|
||
```bash | ||
pip install -r requirements.txt | ||
``` | ||
|
||
Then save the code snippet below as `import_model.py` and run `python import_model.py`. | ||
|
||
**Note**: You need to accept related conditions on [Hugging Face](https://huggingface.co/mistralai/Mistral-7B-v0.1) first to gain access to Mistral-7B-v0.1. | ||
|
||
```python | ||
import bentoml | ||
|
||
MODEL_ID = "mistralai/Mistral-7B-v0.1" | ||
BENTO_MODEL_TAG = MODEL_ID.lower().replace("/", "--") | ||
|
||
def import_model(model_id, bento_model_tag): | ||
|
||
import torch | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, | ||
torch_dtype=torch.float16, | ||
low_cpu_mem_usage=True, | ||
) | ||
|
||
with bentoml.models.create(bento_model_tag) as bento_model_ref: | ||
tokenizer.save_pretrained(bento_model_ref.path) | ||
model.save_pretrained(bento_model_ref.path) | ||
|
||
|
||
if __name__ == "__main__": | ||
import_model(MODEL_ID, BENTO_MODEL_TAG) | ||
``` | ||
|
||
You can verify the download is successful by running: | ||
|
||
```bash | ||
$ bentoml models list | ||
|
||
Tag Module Size Creation Time | ||
mistralai--mistral-7b-v0.1:m7lmf5ac2cmubnnz 13.49 GiB 2024-04-25 06:52:39 | ||
## Define a BentoML Service | ||
|
||
As the model is ready, we can define a [BentoML Service](https://docs.bentoml.com/en/latest/guides/services.html) to wrap the capabilities of the model. | ||
|
||
We will run the JSON-structured generation example [in the README](https://github.com/outlines-dev/outlines?tab=readme-ov-file#efficient-json-generation-following-a-json-schema), with the following schema: | ||
|
||
|
||
```python | ||
DEFAULT_SCHEMA = """{ | ||
"title": "Character", | ||
"type": "object", | ||
"properties": { | ||
"name": { | ||
"title": "Name", | ||
"maxLength": 10, | ||
"type": "string" | ||
}, | ||
"age": { | ||
"title": "Age", | ||
"type": "integer" | ||
}, | ||
"armor": {"$ref": "#/definitions/Armor"}, | ||
"weapon": {"$ref": "#/definitions/Weapon"}, | ||
"strength": { | ||
"title": "Strength", | ||
"type": "integer" | ||
} | ||
}, | ||
"required": ["name", "age", "armor", "weapon", "strength"], | ||
"definitions": { | ||
"Armor": { | ||
"title": "Armor", | ||
"description": "An enumeration.", | ||
"enum": ["leather", "chainmail", "plate"], | ||
"type": "string" | ||
}, | ||
"Weapon": { | ||
"title": "Weapon", | ||
"description": "An enumeration.", | ||
"enum": ["sword", "axe", "mace", "spear", "bow", "crossbow"], | ||
"type": "string" | ||
} | ||
} | ||
}""" | ||
``` | ||
|
||
First, we need to define a BentoML service by decorating an ordinary class (`Outlines` here) with `@bentoml.service` decorator. We pass to this decorator some configuration and GPU on which we want this service to run in BentoCloud (here an L4 with 24GB memory): | ||
|
||
```python | ||
import typing as t | ||
import bentoml | ||
from import_model import BENTO_MODEL_TAG | ||
@bentoml.service( | ||
traffic={ | ||
"timeout": 300, | ||
}, | ||
resources={ | ||
"gpu": 1, | ||
"gpu_type": "nvidia-l4", | ||
}, | ||
) | ||
class Outlines: | ||
bento_model_ref = bentoml.models.get(BENTO_MODEL_TAG) | ||
def __init__(self) -> None: | ||
import outlines | ||
import torch | ||
self.model = outlines.models.transformers( | ||
self.bento_model_ref.path, | ||
device="cuda", | ||
model_kwargs={"torch_dtype": torch.float16}, | ||
) | ||
... | ||
``` | ||
|
||
We then need to define an HTTP endpoint using `@bentoml.api` to decorate the method `generate` of `Outlines` class: | ||
|
||
```python | ||
... | ||
@bentoml.api | ||
async def generate( | ||
self, | ||
prompt: str = "Give me a character description.", | ||
json_schema: t.Optional[str] = DEFAULT_SCHEMA, | ||
) -> t.Dict[str, t.Any]: | ||
import outlines | ||
generator = outlines.generate.json(self.model, json_schema) | ||
character = generator(prompt) | ||
return character | ||
``` | ||
|
||
Here `@bentoml.api` decorator defines `generate` as an HTTP endpoint that accepts a JSON request body with two fields: `prompt` and `json_schema` (optional, which allows HTTP clients to provide their own JSON schema). The type hints in the function signature will be used to validate incoming JSON requests. You can define as many HTTP endpoints as you want by using `@bentoml.api` to decorate other methods of `Outlines` class. | ||
|
||
Now you can save the above code to `service.py` (or use [this implementation](https://github.com/outlines-dev/outlines/blob/main/examples/bentoml/)), and run the code using the BentoML CLI. | ||
|
||
## Run locally for testing and debugging | ||
|
||
Then you can run a server locally by: | ||
|
||
```bash | ||
bentoml serve . | ||
``` | ||
|
||
The server is now active at <http://localhost:3000>. You can interact with it using the Swagger UI or in other different ways: | ||
|
||
<details> | ||
|
||
<summary>CURL</summary> | ||
|
||
```bash | ||
curl -X 'POST' \ | ||
'http://localhost:3000/generate' \ | ||
-H 'accept: application/json' \ | ||
-H 'Content-Type: application/json' \ | ||
-d '{ | ||
"prompt": "Give me a character description." | ||
}' | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>Python client</summary> | ||
|
||
```python | ||
import bentoml | ||
with bentoml.SyncHTTPClient("http://localhost:3000") as client: | ||
response = client.generate( | ||
prompt="Give me a character description" | ||
) | ||
print(response) | ||
``` | ||
|
||
</details> | ||
|
||
Expected output: | ||
|
||
```bash | ||
{ | ||
"name": "Aura", | ||
"age": 15, | ||
"armor": "plate", | ||
"weapon": "sword", | ||
"strength": 20 | ||
} | ||
## Deploy to BentoCloud | ||
After the Service is ready, you can deploy it to [BentoCloud](https://docs.bentoml.com/en/latest/bentocloud/get-started.html) for better management and scalability. [Sign up](https://cloud.bentoml.com/signup) if you haven't got a BentoCloud account. | ||
Make sure you have [logged in to BentoCloud](https://docs.bentoml.com/en/latest/bentocloud/how-tos/manage-access-token.html), then run the following command to deploy it. | ||
```bash | ||
bentoml deploy . | ||
``` | ||
Once the application is up and running on BentoCloud, you can access it via the exposed URL. | ||
**Note**: For custom deployment in your own infrastructure, use [BentoML to generate an OCI-compliant image](https://docs.bentoml.com/en/latest/guides/containerization.html). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
.ipynb_checkpoints | ||
venv/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
service: "service:Outlines" | ||
labels: | ||
owner: bentoml-team | ||
stage: demo | ||
include: | ||
- "*.py" | ||
python: | ||
requirements_txt: "./requirements.txt" | ||
lock_packages: false |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
import bentoml | ||
|
||
MODEL_ID = "mistralai/Mistral-7B-v0.1" | ||
BENTO_MODEL_TAG = MODEL_ID.lower().replace("/", "--") | ||
|
||
|
||
def import_model(model_id, bento_model_tag): | ||
import torch | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, | ||
torch_dtype=torch.float16, | ||
low_cpu_mem_usage=True, | ||
) | ||
|
||
with bentoml.models.create(bento_model_tag) as bento_model_ref: | ||
tokenizer.save_pretrained(bento_model_ref.path) | ||
model.save_pretrained(bento_model_ref.path) | ||
|
||
|
||
if __name__ == "__main__": | ||
import_model(MODEL_ID, BENTO_MODEL_TAG) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
bentoml>=1.2.11 | ||
outlines==0.0.37 | ||
transformers==4.38.2 | ||
datasets==2.18.0 | ||
accelerate==0.27.2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import typing as t | ||
|
||
import bentoml | ||
from import_model import BENTO_MODEL_TAG | ||
|
||
DEFAULT_SCHEMA = """{ | ||
"title": "Character", | ||
"type": "object", | ||
"properties": { | ||
"name": { | ||
"title": "Name", | ||
"maxLength": 10, | ||
"type": "string" | ||
}, | ||
"age": { | ||
"title": "Age", | ||
"type": "integer" | ||
}, | ||
"armor": {"$ref": "#/definitions/Armor"}, | ||
"weapon": {"$ref": "#/definitions/Weapon"}, | ||
"strength": { | ||
"title": "Strength", | ||
"type": "integer" | ||
} | ||
}, | ||
"required": ["name", "age", "armor", "weapon", "strength"], | ||
"definitions": { | ||
"Armor": { | ||
"title": "Armor", | ||
"description": "An enumeration.", | ||
"enum": ["leather", "chainmail", "plate"], | ||
"type": "string" | ||
}, | ||
"Weapon": { | ||
"title": "Weapon", | ||
"description": "An enumeration.", | ||
"enum": ["sword", "axe", "mace", "spear", "bow", "crossbow"], | ||
"type": "string" | ||
} | ||
} | ||
}""" | ||
|
||
|
||
@bentoml.service( | ||
traffic={ | ||
"timeout": 300, | ||
}, | ||
resources={ | ||
"gpu": 1, | ||
"gpu_type": "nvidia-l4", | ||
}, | ||
) | ||
class Outlines: | ||
bento_model_ref = bentoml.models.get(BENTO_MODEL_TAG) | ||
|
||
def __init__(self) -> None: | ||
import torch | ||
|
||
import outlines | ||
|
||
self.model = outlines.models.transformers( | ||
self.bento_model_ref.path, | ||
device="cuda", | ||
model_kwargs={"torch_dtype": torch.float16}, | ||
) | ||
|
||
@bentoml.api | ||
async def generate( | ||
self, | ||
prompt: str = "Give me a character description.", | ||
json_schema: t.Optional[str] = DEFAULT_SCHEMA, | ||
) -> t.Dict[str, t.Any]: | ||
import outlines | ||
|
||
generator = outlines.generate.json(self.model, json_schema) | ||
character = generator(prompt) | ||
|
||
return character |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters