Skip to content

Commit

Permalink
Add PEFT to advanced training script (huggingface#6294)
Browse files Browse the repository at this point in the history
* Fix ProdigyOPT in SDXL Dreambooth script

* style

* style

* Add PEFT to Advanced Training Script

* style

* style

* ✨ style ✨

* change order for logic operation

* add lora alpha

* style

* Align PEFT to new format

* Update train_dreambooth_lora_sdxl_advanced.py

Apply huggingface#6355 fix

---------

Co-authored-by: multimodalart <[email protected]>
  • Loading branch information
2 people authored and donhardman committed Dec 29, 2023
1 parent 70ed668 commit e192db3
Showing 1 changed file with 49 additions and 87 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import save_file
Expand All @@ -54,10 +56,9 @@
UNet2DConditionModel,
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.models.lora import LoRALinearLayer
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr, unet_lora_state_dict
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.training_utils import compute_snr
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available


Expand All @@ -67,39 +68,6 @@
logger = get_logger(__name__)


# TODO: This function should be removed once training scripts are rewritten in PEFT
def text_encoder_lora_state_dict(text_encoder):
state_dict = {}

def text_encoder_attn_modules(text_encoder):
from transformers import CLIPTextModel, CLIPTextModelWithProjection

attn_modules = []

if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
name = f"text_model.encoder.layers.{i}.self_attn"
mod = layer.self_attn
attn_modules.append((name, mod))

return attn_modules

for name, module in text_encoder_attn_modules(text_encoder):
for k, v in module.q_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

for k, v in module.k_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

for k, v in module.v_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

for k, v in module.out_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

return state_dict


def save_model_card(
repo_id: str,
images=None,
Expand Down Expand Up @@ -161,8 +129,6 @@ def save_model_card(
base_model: {base_model}
instance_prompt: {instance_prompt}
license: openrail++
widget:
- text: '{validation_prompt if validation_prompt else instance_prompt}'
---
"""

Expand Down Expand Up @@ -1264,54 +1230,25 @@ def main(args):
text_encoder_two.gradient_checkpointing_enable()

# now we will add new LoRA weights to the attention layers
# Set correct lora layers
unet_lora_parameters = []
for attn_processor_name, attn_processor in unet.attn_processors.items():
# Parse the attention module.
attn_module = unet
for n in attn_processor_name.split(".")[:-1]:
attn_module = getattr(attn_module, n)

# Set the `lora_layer` attribute of the attention-related matrices.
attn_module.to_q.set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=args.rank
)
)
attn_module.to_k.set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=args.rank
)
)
attn_module.to_v.set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=args.rank
)
)
attn_module.to_out[0].set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_out[0].in_features,
out_features=attn_module.to_out[0].out_features,
rank=args.rank,
)
)

# Accumulate the LoRA params to optimize.
unet_lora_parameters.extend(attn_module.to_q.lora_layer.parameters())
unet_lora_parameters.extend(attn_module.to_k.lora_layer.parameters())
unet_lora_parameters.extend(attn_module.to_v.lora_layer.parameters())
unet_lora_parameters.extend(attn_module.to_out[0].lora_layer.parameters())
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
unet.add_adapter(unet_lora_config)

# The text encoder comes from 🤗 transformers, so we cannot directly modify it.
# So, instead, we monkey-patch the forward calls of its attention-blocks.
if args.train_text_encoder:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
text_lora_parameters_one = LoraLoaderMixin._modify_text_encoder(
text_encoder_one, dtype=torch.float32, rank=args.rank
)
text_lora_parameters_two = LoraLoaderMixin._modify_text_encoder(
text_encoder_two, dtype=torch.float32, rank=args.rank
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)

# if we use textual inversion, we freeze all parameters except for the token embeddings
# in text encoder
Expand All @@ -1335,6 +1272,17 @@ def main(args):
else:
param.requires_grad = False

# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
for model in models:
for param in model.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)

# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
Expand All @@ -1346,11 +1294,15 @@ def save_model_hook(models, weights, output_dir):

for model in models:
if isinstance(model, type(accelerator.unwrap_model(unet))):
unet_lora_layers_to_save = unet_lora_state_dict(model)
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
text_encoder_one_lora_layers_to_save = text_encoder_lora_state_dict(model)
text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
text_encoder_two_lora_layers_to_save = text_encoder_lora_state_dict(model)
text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
else:
raise ValueError(f"unexpected save model: {model.__class__}")

Expand Down Expand Up @@ -1407,6 +1359,12 @@ def load_model_hook(models, input_dir):
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)

unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))

if args.train_text_encoder:
text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))

# If neither --train_text_encoder nor --train_text_encoder_ti, text_encoders remain frozen during training
freeze_text_encoder = not (args.train_text_encoder or args.train_text_encoder_ti)

Expand Down Expand Up @@ -1997,13 +1955,17 @@ def compute_text_embeddings(prompt, text_encoders, tokenizers):
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
unet = unet.to(torch.float32)
unet_lora_layers = unet_lora_state_dict(unet)
unet_lora_layers = get_peft_model_state_dict(unet)

if args.train_text_encoder:
text_encoder_one = accelerator.unwrap_model(text_encoder_one)
text_encoder_lora_layers = text_encoder_lora_state_dict(text_encoder_one.to(torch.float32))
text_encoder_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_one.to(torch.float32))
)
text_encoder_two = accelerator.unwrap_model(text_encoder_two)
text_encoder_2_lora_layers = text_encoder_lora_state_dict(text_encoder_two.to(torch.float32))
text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_two.to(torch.float32))
)
else:
text_encoder_lora_layers = None
text_encoder_2_lora_layers = None
Expand Down

0 comments on commit e192db3

Please sign in to comment.